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0 | Introduction

These course shall discuss the structure of space and time with an ultimate aim of understand-
ing the theories of gravity and relativistic matter. We will connect these two theories using
the famous Einstein equations and show how it is all related to the curvature of spacetime.
Collectively this forms a beginning introduction to general relativity.

In order to be able to even start having this discussion, we will have to build up our
understanding of the notion of spacetime. It is important we build up a rigorous understanding
of what spacetime actually is and not simply just ‘it’s space and time somehow put together’.
Instead we shall build up to a point where we can understand the following statement:

Spacetime is a four-dimensional topological manifold with a smooth atlas carrying a
torsion-free connection compatible with a Lorentzian metric and a time orientation

satisfying the Einstein equations.

Now, it would be surprising if the reader was already completely familiar with exactly
what this statement means. The first part of the lecture series is basically devoted to clarify-
ing/defining what all the terms above mean. The disclaimer that comes with this is that the
first part of this course will be heavily mathematical and it won’t always be immediately clear
why what we’re doing will lead to an understanding of gravity or matter. Dr. Schuller does
a great job in trying to keep our minds on track with what we’re doing, however should you
get a little lost on how everything will come together, my advice would be trust that it will
and just focus on understanding the material fully, as this understanding will be vital later.

As a brief overview of how we will build up to and understanding of this statement, the
following table tells us which lectures will tackle which parts of the statement:

Terms Lecture

Topological 1
4-Dimensional Manifold 2
Smooth atlas 4
Connection 7
Torsion-free 8
Lorentzian Metric 10
Time Orientation 13
Einstein Equations 15

The remainder of the course will then be used to discuss this interplay between matter
and gravity and to discuss objects such as black holes.

1



LECTURE 0. INTRODUCTION 2

There are also tutorials provided with the course, and I shall equally type up these and
place them at the end of the notes, so as to not interrupt the flow of the notes. It is highly
recommended that the reader also go through these tutorials after the corresponding lecture.

I have also included exercises throughout the notes to give the reader a chance to check
they understand what’s going on. Some of these are actually answered in the lectures, so can
be checked against them. I have only done this if I thought the proof was relatively straight
forward. Other exercises are based off comments made by Dr. Schuller while teaching. As
well as these some exercises are of my own invention. I encourage the reader to attempt them
all, and should they get stuck if they email me I shall try get back with some further hints
and/or the solutions.

All of the diagrams in these notes have been drawn by myself in Tikz, and anyone who is
interested in using them please feel free to email me. Alternatively, the code for these notes
is available on via my GitHub.

https://github.com/RichieDadhley


1 | Topology

1.1 Topology

At its coarsest level, spacetime is just a set. In other words, spacetime is just a collection of
points, known as the elements of a set.1 However, this definition is not enough to talk about
even the simplest notions we discuss in classical physics, namely continuity of maps. It is
important that we are able to talk about and require continuity of maps as the motion of a
particle is given by a map, and it is clear we want this map to be continuous. That is, we
don’t want the position of a particle to all of a sudden ‘jump’ from one point to another:

So we need to introduce some new structure onto our set that allows us to talk about
continuity. There are lots of things we could introduce in order to do this, however we need
to be careful; we do not want to start adding additional properties to our set that will later
come back to bite us. We therefore want to use the weakest structure we can. So what is it?
Luckily the answer to this question is already known: it is a so-called topology.

Definition (Powerset). The powerset P(S) of a set S is the set of all subsets of S.

Definition (Topology). Let M be a set. A topology O on M is a subset O ⊆ P(M)
satisfying:

(i) ∅ ∈ O andM∈ O.

(ii) Given U, V ∈ O then U ∩ V ∈ O.

(iii) Let A be an arbitrary index set. Given Uα ∈ O then
⋃
α∈A Uα ∈ O.

Remark 1.1.1 . Conditions (ii) and (iii) look deceptively similar, but there is an important
difference. Condition (ii) says that a finite intersection of elements is still in O, whereas (iii)
says that an arbitrary union of elements is in O.

1I might include a short section on set theory here. This footnote is just to remind me to consider it.

3
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Example 1.1.2 . LetM = {1, 2, 3}. Then we could choose to define

O1 :=
{
∅, {1, 2, 3}

}
O2 :=

{
∅, {1}, {2}, {1, 2, 3}

}
O3 :=

{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

The question is, which are topologies onM? A quick check shows that O1 and O3 are, but
O2 is not as {1} ∪ {2} = {1, 2} /∈ O2.

So we see, given the set cM calculating whether something is a topology is rather easy
(although perhaps a bit boring). What is we don’t know the form ofM, can we still define
specific topologies? The answer is yes and the example shows us what.

Definition (Chaotic Topology). LetM be a set. The chaotic topology onM is defined as

Ochaotic := {∅,M}.

Definition (Discrete Topology). LetM be a set. The discrete topology onM is defined as

Odiscrete := P(M).

So in Example 1.1.2, O1 is the chaotic topology and O3 the discrete topology. However, both
the chaotic and discrete topology are utterly useless, they are simply the extreme cases of
topologies with the least amount and most amount of elements, respectively. However, on
Rd = {(p1, ..., pd)|pi ∈ R} there is a very important topology which we shall use throughout
these notes.

Definition (Standard Topology on Rd). Let M = Rd. The standard topology on M is
defined as

Os := {U ∈ P(Rd) | ∀p ∈ U ∃r ∈ R+ : Br(p) ⊆ U},

where

Br(p) :=

{
(q1, ..., qd) ∈ Rd

∣∣∣∣ d∑
i=1

(qi − pi)2 < r2

}
is called a soft-ball of radius r about p, also known as the neighbourhood of p with radius r.

Exercise

Show that the standard topology is in fact a topology, i.e. show it meets the conditions
(i),(ii) and (iii).

Remark 1.1.3 . To those familiar with vector space structures and normed spaces, you might
be tempted to say ‘Ah the soft ball is just the Euclidean norm’. However, the definition above
does not need a full vector space structure (which a norm does) in order for it to hold. All
we require is that we know what (qi − pi)2 means.

Definition (Topological Space). Let M be a set and O be a topology on M. We call the
double (M,O) a topological space.
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Remark 1.1.4 . In these notes if we talk about Rd being a topological space (for example when
saying a map is continuous, see below), if no specific topology is given it will be assumed that
we equip it with the standard topology.

Remark 1.1.5 . In this lecture course we might not always write down the topology and simply
callM a topological manifold. Obviously if we say that, there is an invisible O kicking about,
we just want to save some typing. However, we shall try to always be explicit in order to
avoid confusion.

Intuitively we can think of the standard topology on Rd as shapes that don’t include their
boundaries and the soft ball as a circle2 of radius r that doesn’t contain the boundary. With
this intuition we easily see the extension of the standard topology to general topologies: they
are the sets of open sets within that set. In fact it actually works the other way around, we
use a topology in order to define what we mean by an open set.

Definition (Open Set). Let (M,O) be a topological space. We call U ⊆M an open set if
and only if U ∈ O.

Definition (Closed Set). Let (M,O) be a topological space. We call a set V ⊆M a closed
set is and only ifM\ V ∈ O, whereM\ V is known as the compliment of V .

Remark 1.1.6 . It is tempting to think that a closed set is simply a set that is not open.
However, this is not true. In fact a set can be

(i) Open and not closed, e.g. (0, 1) in (R,Os),

(ii) Not open and closed, e.g. [0, 1] in (R,Os),

(iii) Open and closed, e.g. ∅ in any topological space,

(iv) Not open and not closed, e.g. [0, 1) in (R,Os).

Exercise

Show that the examples given in the above remark are correct.

1.2 Continuous Maps

Let’s first just recall the terminology/notation for a map. We say that f is a map from a
set M, known as the domain, to another set N , known as the target, and we write this as
f : M → N . We say that the element m ∈ M is mapped to n ∈ N , which we write as
f : m 7→ n. A map will take every element in its domain to some element in its target. It is
possible that a two different elements of the domain are mapped to the same element of the
target and it is not required that every element in the target is hit. Based on this we have
the following definitions.

2In R2 at least. In higher values of d you just take that dimensional equivalent of a circle, e.g. a ball in 3D.
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Definition (Injective Map). A map f : M → N is said to be injective if it is one-to-one.
That is

f(m1) = f(m2) ⇐⇒ m1 = m2 ∀m1,m2 ∈M.

Definition (Surjective Map). A map f :M→ N is said to be surjective if every element
of the target is hit. That is

∀n ∈ N ∃m ∈M : f(m) = n.

Definition (Bijective Map). A map f :M→N is called bijective if it is both injective and
surjective.

The answer to whether a map f : M → N is continuous depends, by definition, on the
choice of which topologies are chosen on the setsM and N .

Definition (Continuous Map). Let (M,OM) and (N ,ON ) be topological spaces. A map
f :M→N is called continuous with respect to OM and ON if and only if

∀V ∈ ON , preimf (V ) ∈ OM,

where
preimf (V ) := {m ∈M| f(m) ∈ V }.

That is "the preimages of open sets in N are open inM".

Remark 1.2.1 . Note the preimage of a map f is not the same thing as its inverse. For example,
we can not define an inverse for a non-injective map; if two elements in the domain map to the
same element in the target, there is no clear way to decide which element you get under the
inverse map. However the preimage in the case is the collection of both points. So continuity
does not require the map to be injective. Equally note that surjectivity is not required as any
element that isn’t hit has preimage ∅ ∈ OM.

Remark 1.2.2 . Note is we choose the topology onM to be the discrete topology then every
map f :M→N is continuous. This is easily seen because the preimage of any set in ON is
either a subset ofM or the empty set, both of which are in the discrete topology onM.

Definition (Homeomorphism). Let f : M → N be a bijective map. Then the map is
said to be a homeomorphism if both f and its inverse f−1 are continuous. They are the
structure-preserving3 maps of topology.

Example 1.2.3 . LetM = N = {1, 2} and let fM→N be given by

f(1) = 2 and f(2) = 1.

Now define
OM :=

{
∅, {1}, {2}, {1, 2}

}
, and ON :=

{
∅, {1, 2}

}
.

3In other words, they are the topological isomorphisms.
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(a) To check whether f is continuous w.r.t. OM and ON we need to check the preimages
of open sets in N are open sets inM.

preimf (∅) = ∅ ∈ OM,
preimf

(
{1, 2}

)
=M∈ OM,

and so f is continuous.

(b) How about the inverse map f−1 : N →M. Well it satisfies

f−1(1) = 2 and f−1(2) = 1,

however we have

preimf−1({1}) = {2}, and preimf−1({2}) = {1},

neither of which are in ON , and so this map is not continuous.

1.3 Composition of Continuous Maps

Definition (Composition of Maps). Given two maps f : M → N and g : N → P, we can
define their composition as a new map

g ◦ f :M→ P

where (g ◦ f)(m) := g
(
f(m)

)
.

Theorem 1.3.1. Let f :M→N and g : N → P be two continuous maps w.r.t. the relevant
topologies. Then the composition map g ◦ f :M→ P is also continuous.

Proof. Let V ∈ OP . Now we have

preimg◦f (V ) := {m ∈M| (g ◦ f)(m) ∈ V }
= {m ∈M| f(m) ∈ preimg(V ) ∈ ON }
= preimf

(
preimg(v)

)
∈ OM,

where the second line follows from the continuity of g and the last line from the continuity of
f .

Exercise

Show that Theorem 1.3.1 extends to the composition of an arbitrary number of con-
tinuous maps.
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1.4 Inheriting a Topology

So we know how to define a topology on a setM. We now want to ask the question: given
some other set S is it possible to use the topology onM to define one on S? The answer is
obviously yes4 and it is known as the inherited topology. How you do this obviously depends
on the situation. The way that is important for spacetime physics is the following.

Definition. Let (M,OM) be a topological space and let S ⊂ M. We define the subset
topology to be

O|S := {U ∩ S |U ∈ OM}.

Proof. We want to show that the subset topology is indeed a topology, i.e. need to check it
meets the three conditions.

(i) We have ∅ = ∅∩S and ∅ ∈ OM which tells us that ∅ ∈ O|S . Equally we have S =M∩S
andM∈ OM and so S ∈ O|S .

(ii) Let A,B ∈ O|S , then we know there exists Ã, B̃ ∈ OM such that A = Ã ∩ S and
B = B̃ ∩ S. From which we have A ∩ B = (Ã ∩ S) ∩ (B̃ ∩ S) = (Ã ∩ B̃) ∩ S. Finally
using Ã ∩ B̃ ∈ OM we have A ∩B ∈ O|S .

(iii) Let Uα ∈ O|S , which tells us that there exists Ũα ∈ OM such that Uα = Ũα ∩ S. As
above this tells us that

⋃
α∈A Uα =

(⋃
α∈A Ũα

)
∩ S where A is a arbitrary index set.

Finally using
⋃
α∈A Ũα ∈ OM we get

⋃
α∈A Uα ∈ O|S .

We might wonder why on earth we would choose to define such a map, the answer is to
do with the continuity of maps.

Claim 1.4.1 . Suppose we have some continuous map f :M→N between topological spaces
(M,OM) and (N ,ON ). Then if we have some subset S ⊂M which we turn into a topological
space with the subset topology (S,O|S), then we are guaranteed that the restricted map
f |S : S → N is also continuous w.r.t. O|S and ON .

Exercise

Prove Claim 1.4.1.

4Otherwise the title of this section would seem silly.



2 | Topological Manifolds

Its a fact of life1 that there are so many different topological spaces that mathematicians can’t
even classify2 them. In other words, there is no such set of topological notions known such
that we can work out whether two spaces are homeomorphic by simply ‘ticking’ whether two
spaces have these notions or not.

For classical3 spacetime physics, we may focus on topological spaces (M,OM) that can
be charted, analogously to how the surface of the Earth is charted in an atlas.

2.1 Topological Manifolds

Definition. Let Up denote an open neighbourhood containing the point p in some topological
space. A topological space (M,O) is called a d-dimensional topological manifold if

∀p ∈M ∃Up ∈ O : ∃x : Up → x(Up) ⊆ Rd

such that

(i) x is invertible: x−1 : x(Up)→ Up,

(ii) x is continuous,4

(iii) x−1 is continuous.

Remark 2.1.1 . Note, from the required continuity of x and its inverse, we see that the image
x(Up) must be open w.r.t. the standard topology on Rd.

Example 2.1.2 . LetM be the surface of a torus. This is a subset of R3, and so we can inherit
the subset topology from the standard topology on R3. This is an example of a 2-dimensional
topological manifold. We see this by taking any open neighbourhood on the torus, which is
just a boudariless closed shape on the surface, and we map all the points within it to a open
set in R2 (see diagram below). With some thought/workings one can convince themselves
that this map will be injective (and so invertible), the inverse map is surjective (so that the
whole torus surface is mapped) and continuous in both directions.

1Or mathematics to be less dramatic.
2In the sense that one can classify all Lie groups.
3As in not quantum mechanical. Obviously we are talking about relativistic physics.
4We use the standard topology on Rd.

9
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U

x x(U)

M
R2

This is exactly the same idea as what one does when charting the surface of the Earth to
make road maps and atlases.

Remark 2.1.3 . It might be tempting to say that a topological manifold is homeomorphic5 to
Rd given the explanation in the previous example. However, this is not true because our map
is only surjective to a subset of Rd, not the whole set. So the correct statement is that a
topological manifold is homeomorphic to some particular subset of Rd.

It is important to note that the values in the chart (i.e. the coordinates in R2 above)
bare no physical significance whatsoever. They simply act as a way for us to compare the
positions of things in the real world. It is the surface of the torus itself that has the physical
significance. To clarify, if the base of the Eiffel tower was at point p ∈ M and we mapped
it to the coordinates (x1(p), x2(p)) = (1, 2), say, the values 1 and 2 do not mean anything
physical, they simply tell us that in this chart the position of the Eiffel tower’s base is (1, 2).
Of course if we picked a different chart (for example consider just rotating our chart by 90
degrees) these coordinate values would change to something new, however the Eiffel tower
itself is completely unaffected by this.

Example 2.1.4 . LetM be a wire loop. We again can imagine this in R3 and inherit the subset
topology from the standard topology. Following the same idea as the previous example, we
see that this is a 1-dimensional topological manifold.

Example 2.1.5 . Now consider the following diagram

M

5That is there exists a bijective map that is continuous and so is its inverse.
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Again this is clearly a subset of R3 (or even R2 if you view it as flat on the page) and so we can
inherit a topology onto it. However this topological space fails to be a topological manifold
because of the splitting point. This point essentially stops us being able to define a invertible,
both ways continuous map.

Terminology . • The pair (U, x) is called a chart of (M,O).

• The set A = {(U(α), x(α)) |α ∈ A}, for some arbitrary index set A, is called an atlas of
(M,O) if

⋃
α∈A U(α) =M.

• x : U → x(U) ⊆ Rd is called a chart map defined by x(p) =
(
x1(p), ..., xd(p)

)
, where

xi(p) is the ith coordinate of p w.r.t. the chosen chart (U, x).

• xi : U → R are called the coordinate maps.

Definition (Maximal Atlas). An atlas that contains every possible chart for a topological
manifold is called a maximal atlas.

2.2 Chart Transition Maps

As the name suggests, a chart transition map is a chart dependent thing and therefore have
no physical meaning at all. However, they are incredibly useful (especially for physicists) and
so we shall study them.

Imagine two charts (U, x) and (V, y) for the same topological space (M,O) with overlap-
ping regions, i.e. U ∩ V 6= ∅. A point in this overlap region can be mapped by both x and y
to their respective patches of Rd. We can go between these two chart representatives of the
point using the chart transition maps. For example if we want to go from the chart (U, x)
to (V, y) we use the chart transition map (y ◦ x−1) : x(U ∩ V )→ y(U ∩ V ) (see Figure 2.1).

We can draw this idea just in terms of maps by the following:

U ∩ V

x(U ∩ V ) y(U ∩ V )

x y

y ◦ x−1

Informally, the chart transition maps contain the information about how to ‘glue together’
the pages of an atlas. That is, given 10 pages of an atlas each of which overlaps with the
two others, the chart transition maps tell us what order to put them together to get the
geographical order6 correct.

6By which we obviously mean that page 3 follows on from page 2 in the same way that page 2 follows on
from page 1.
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M

U VU ∩ V
p

x

x(p)

y

y(p)

x(U)

x(U ∩ V )

y(V )

y(U ∩ V )

(
y ◦ x−1

)(
x(p)

)

Figure 2.1: Chart representations (U, x) and (V, y) with a non-empty overlap. The
overlap region (shaded) U ∩ V is mapped by both x and y to their respective represen-
tations. A chart transition map y ◦ x−1 can be used to map the overlap region from
one representation into the other. The chart transition map is continuous as it is the
composition of two continuous maps.

2.3 Manifold Philosophy

Often it is desirable (or indeed the only way) to define properties (e.g. continuity) of real
world objects (e.g. the curve γ : R → M) by judging suitable conditions, not on the real
world object itself but on a chart representative/image of that real world object. The main
advantage of doing this is we can then use undergraduate analysis to study these properties.
For example if γ : R→M is the real world trajectory of a particle, we can work out whether
the path is continuous by asking whether the composite map (x ◦ γ) : R→ Rd is continuous,
using the undergraduate notion of continuity of such a map.

We shall see, however, that we must be careful when doing this. Just because a real world
object has a certain undergraduate behaviour in some chart, it does not mean the real world
object has it too. What we will actually require is that we can form an atlas such that in every
chart the representative of the object has our desired property. We will see next lecture, that
this can be thought of as the idea that we want the chart transition maps to also have our
desired undergraduate property, and that the property is maintained under the composition
of maps. What we’re saying here is that the property of the real world object can’t depend
on how we imagine it drawn on a piece of paper. It is a chart independent property.
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Exercise

Show that the ‘lifted’ notion of undergraduate continuity corresponds to the definition
of a continuous map given earlier. That is, if γ : R→M is a path on our manifold, show
that if we know all the chart representative maps (x ◦ γ) : R → Rd are undergraduate
continuous, we can conclude that the preimage of open sets in M under γ are open
sets in R.
Hint: Use Theorem 1.3.1 along with the definition of a topological manifold.



3 | Multilinear Algebra

Multilinear algebra, as the name suggests, is just an extension of linear algebra. When
studying linear algebra, one invariably studies vector space structures. We wish to emphasise
here that we will not equip space(time) with a vector space structure. This might seem like
a strange thing to say, but in which case ask yourself ‘where is 5×Paris?’ or ‘where is Paris
+ Vienna?’ However, the so-called tangent spaces TpM to smooth manifolds1 will carry a
natural vector space structure.

It is beneficially to first study vector spaces abstractly for two reasons

(i) For the construction of TpM, one need an intermediate vector space C∞(M), and

(ii) Tensor techniques are most easily understood in an abstract setting.

3.1 Vector Spaces

In order to define a vector space, we first need to make sure we know what a field is.2

Definition (Abelian Group). Let K be a set and let • : K → K. The double (K, •) is a
Abelian (or commutative) group if the following axioms are satisfied

(i) Commutative; a • b = b • a,

(ii) Associative; (a • b) • c = a • (b • c),

(iii) Neutral element; ∃0 ∈ K such that a • 0 = 0 • a = a,

(iv) Inverse; ∃a−1 ∈ K such that a • a−1 = a−1 • a = 0.

Example 3.1.1 . The real numbers equipped with addition form an Abelian group. However,
the real numbers do not form an Abelian group when equipped with multiplication. This
is because the neutral element is clearly 1 ∈ R, but 0 ∈ R and there is no a ∈ R such that
a× 0 = 1.3

Definition (Field). A field is a triple (F,+, ·) where

• F is a set, and
1What these terms strictly mean shall be explained in the course.
2There is a lot more information on this in Dr. Schuller’s Lectures on Geometric Anatomy of Theoretical

Physics.
3Infinity is not counted as a well defined element of the reals.
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• +, · : F× F→ F are maps.

They must satisfy the following axioms

(i) (F,+) is an Abelian group.

(ii) (F∗, ·) is an Abelian group, where F∗ = F \ {0}.

(iii) Distributive; ∀a, b, c ∈ F a · (b+ c) = a · b+ a · c.

Remark 3.1.2 . If we don’t require condition (ii) above, but in its place just require the asso-
ciativity condition, a · (b · c) = (a · b) · c, then we get a weaker notion called a ring. If we also
require the existence of a neutral element 1 ∈ F then we get a unital ring. Similarly, if we
require the commutative condition we get a commutative ring. We will use rings later in the
course (starting in lecture 6).

Definition (F-Vector Space). A F-vector space is the triple (V,+, ·) where

• V is a set,

• + is the addition map, + : V × V → V , and

• · is the s-multiplication map, · : F× V → V ,

satisfying, for all v, w, u ∈ V and a, b ∈ F

(i) Commutative w.r.t. +; v + w = w + v,

(ii) Associative w.r.t. +; (v + w) + u = v + (w + u),

(iii) There is a neutral element w.r.t. +; ∃e ∈ V such that v + e = v,

(iv) There is an inverse element w.r.t. +; ∃ṽ ∈ V such that ṽ + v = v + ṽ = e.

(v) Associative w.r.t. ·; a · (b · v) = (a · b) · v,

(vi) Distributive 1; (a+ b) · v = a · v + a · w,

(vii) Distributive 2; a · (v + w) = a · v + a · w,

(viii) Unitary w.r.t. ·; 1 · v = v.

In these notes we will only really consider R-vector spaces, and so most of the definitions
that follow will use R as the field. Obviously we could extend these definitions to general
F-vector spaces.

Remark 3.1.3 . We should actually be careful in the above definition when we write + and ·.
There are two kinds floating about. One is the +/· we are defining for our vector space, and
the other is the +/· on F. For example in (vi) we have (a+b) · v = a · v + b · v. The black
+s here are the ones defined for our vector space, whereas the red on is the addition on F.
The same idea goes for condition (v). If we were being really particular, we would give these
different names, however we shall just assume that we can work it out given the context (i.e.
both a and b are real numbers so a+ b is clearly the addition on F.)
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Remark 3.1.4 . Just as we can build a F-vector space over a field (F,+, ·), we can built a
so-called R-module over a ring (R,+, ·). It is done in exactly the same fashion.

Terminology . An element of a vector space is often referred to informally as a vector.

We emphasise the word informally in the above terminology, for a reason that the next
example demonstrates.

Example 3.1.5 . First define the set

P :=

{
p : (−1, 1)→ R

∣∣∣∣ p(x) =
N∑
n=1

pnx
n, pn ∈ R

}
.

We could then ask whether � : (−1, 1)→ R defined by �(x) = x2 is a vector? The answer is
‘no, of course it’s not!’ Why? Well because we don’t even have a vector space so can’t have
vectors. That is we haven’t defined an addition and s-multiplication for P .

Now let’s imagine that we define an addition and s-multiplication pointwise, meaning

+ : (p, q) 7→ p+P q

is defined via
(p+P q)(x) := p(x) +R q(x),

and similarly for ·P : R× V → R, where the subscripts indicate which + we’re talking about.
If we now ask whether � is a vector, the answer is ‘well, yes!’

The point of the above example is to demonstrate that you can’t just look at something
itself and decide whether it is a vector or not, you need to know whether there is an underlying
vector space or not. This might seem like a rather pedantic point to prove, however it is an
important point to note as people often ask ‘what is a tensor?’ A tensor is an extension of
a vector4 and so they are defined as elements of a tensor space, which in itself is a rather
abstract object. This often leads people to being very confused, however once you understand
the above point, this confusion should die away.

Exercise

Prove that (P,+P , ·P ) as defined in the above example is in fact a vector space, i.e.
show it meets the 8 axioms.

3.2 Linear Maps

It is a standard procedure in mathematics that once you introduce a new structure to a object
that you consider the structure preserving maps. That is the maps that map two objects with
the same types of structures that have the property that the structure on one can be derived
from the structure on the other. Such maps are generally known as isomorphisms of the
relevant structure(s). We have already done this when considering topological spaces: we
considered the homeomorphisms between two topological spaces. As you might have pieced
together, the structure preserving maps for the vector space structure are known as linear
maps.

4Or perhaps more correctly, a vector is a specific type of tensor.
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Definition (Linear Maps). Let (V,+V , ·V ) and (W,+W , ·W ) be vector spaces. Then a map
ϕ : V →W is called linear if: for all v, ṽ ∈ V and λ ∈ R,

(i) ϕ(v +V ṽ) = ϕ(v) +W ϕ(ṽ), and

(ii) ϕ(λ ·V v) = λ ·W ϕ(v).

Example 3.2.1 . Again let’s consider the space P as defined in Example 3.1.5. Let’s consider
the map δ : P → P defined by δ(p) := p′, i.e. the differential operator. This is a linear map
as

δ(p+ q) = (p+ q)′ = p′ + q′ = δ(p) + δ(q), and
δ(λ · p) = (λ · p)′ = λ · p′ = λ · δ(p).

Notation. We write a linear map ϕ : V →W by putting a tilde on the arrow, i.e. ϕ : V
∼−→W .

Theorem 3.2.2 (Composition of Linear Maps). Suppose we have the following linear maps
ϕ : V

∼−→W and ψ : W
∼−→ U . Then the map (ψ ◦ ϕ) : V

∼−→ U is also linear.

Exercise

Prove Theorem 3.2.2 and show that it holds for arbitrary compositions.

Example 3.2.3 . Let δ : P
∼−→ P be the same map as before. Now consider the composite map

δ ◦ δ, the second derivative operator. Then Theorem 3.2.2 along with the previous example
tells us that this is also a linear map (δ ◦ δ) : P

∼−→ P

3.3 Vector Space of Homomorphisms

Definition (The Vector Space of Homomorphisms). Let (V,+, ·) and (W,+, ·)5 be vector
spaces. Then we can define the set

Hom(V,W ) := {ϕ : V
∼−→W}.

We can turn this into a vector space by defining

⊕ : Hom(V,W )×Hom(V,W )→ Hom(V,W )

(ϕ,ψ) 7→ ϕ⊕ ψ,

where (ϕ⊕ψ)(V ) = ϕ(V )+ψ(V ), and similarly for the s-multiplication � : R×Hom(V,W )→
Hom(V,W ). The triple (Hom(V,W ),⊕,�) is the vector space of homomorphisms.

Example 3.3.1 . Again we use our polynomial set P . We can turn Hom(P, P ) into a vector
space by defining ⊕/� as above. So we obtain things like

5� δ ⊕ (δ ◦ δ) ∈ Hom(P, P ),

and so a sum of derivative operators of different orders is again a linear map on the set of
polynomials.

5From now on we shall drop the subscripts on the +/· and assuming we know which is which based on the
context of the equation.
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3.4 Dual Vector Space

Definition (Dual Vector Space). Let (V,+, ·) be a vector space. We define the dual vector
space (to V ) (V ∗,⊕,�), where

V ∗ := Hom(V,R) := {ϕ : V
∼−→ R},

and where ⊕/� are necessarily defined.

Terminology . As with the vector, an element ϕ ∈ V ∗ is informally called a covector.

We actually need to be even more careful when talking about covectors; as we have defined
it a covector is an element of a vector space, but our previous terminology tells us that that’s
a vector. So in order to call something a covector, we not only need to know that the set it
belongs to has an underlying vector space, we also need to know that it is a dual to some
other vector space, whose elements we have already called vectors.

Example 3.4.1 . Consider a map I : P
∼−→ R, which tells us that I ∈ P ∗. We define it by

I(p) :=

∫ 1

0
dx p(x).

This tells us that the integration operator I :=
∫ 1

0 dx is a covector.

Exercise

Prove that I : P
∼−→ R is indeed linear.

Theorem 3.4.2. Let (V,+, ·) be a vector space. If it is finite dimensional6 then the double
dual is the vector space itself. That is7

(V ∗)∗ = V,

when dimV <∞.

Remark 3.4.3 . When we learn physics lower down in school we actually meet lots of covectors
that we, at that time, called vectors. This was obviously done so as not to have to introduce
the idea of a covector. However, we just want to point out here that covectors are not some
new thing we have never seen before.

3.5 Tensors

If we are consider finite dimensional vector spaces, then there is a very natural definition for
tensors as multilinear maps.

6We shall soon clarify what we mean by the ‘dimension’ of a vector space.
7Really we should use an isomorphic symbol here, but we shall ignore this in these notes.
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Definition (Tensor). Let (V,+, ·) be a vector space. A (r, s)-tensor, T , over V is a multilinear
map

T : V ∗ × ...× V ∗︸ ︷︷ ︸
r-terms

×V × ...× V︸ ︷︷ ︸
s-terms

∼−→ R.

Remark 3.5.1 . Others flip the definition of an (r, s)-tensor, in the sense that r tells you how
many V terms appear in the above map and s tells you how many V ∗ terms appear there.
It is important to make sure you know which convention you are dealing with before moving
forward.

Example 3.5.2 . Let T be a (1, 1)-tensor. This means it takes in as its argument one covector
and one vector. The multilinearity of T tells us that: for all ϕ,ψ ∈ V ∗, v, w ∈ V and λ ∈ R

T (ϕ+ ψ, v) = T (ϕ, v) + T (ψ, v),

T (λ · ϕ, v) = λT (ϕ, v),

T (ϕ, v + w) = T (ϕ, v) + T (ϕ,w)

T (ϕ, λ · v) = λT (ϕ, v).

Example 3.5.3 . We can give an example of a tensor using our polynomial space. The map
g : P × P ∼−→ R defined by

g(p, q) =

∫ 1

−1
dxp(x)q(x)

is a (0, 2)-tensor over P . This is just the inner product on the real numbers. So the inner
product is a (0, 2)-tensor. This example will lead nicely into later when we discuss so-called
metrics.

Terminology . As defined above, the number r is often known as the covariant order of T and
s the contravariant order. Their sum r + s is known as the rank of T .

The definition for the tensor we have given is actually only one way that you might see a
tensor defined. We shall now give a couple others to make reading other texts easier. Both
of these require our vector spaces to be finite dimensional.

Definition (Tensor (via Tensor Product)). Let (V,+, ·) be a vector space. A (r, s)-tensor is
defined by

T = V ⊗ ...⊗ V︸ ︷︷ ︸
r-terms

⊗V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
s-terms

≡ V ⊗r ⊗ (V ∗)⊗s,

where ⊗ is the so-called tensor product.

One can give a strict definition of the tensor product, but for our purposes, we can just
view it to be such that this definition and the first tensor definition coincide. Note how here
the r and s are switched, so we have r V terms and s V ∗ terms. Now, because we’re assuming
our vector space is finite dimensional, Theorem 3.4.2 tells us that V = (V ∗)∗, and so we can
can think of V as the set of all linear maps from V ∗ to R. We therefore just take the tensor
product to mean ‘we have r linear maps V : V ∗

∼−→ R and s linear maps V ∗ : V
∼−→ R.’

This definition is useful because it shows us easily how to make higher order tensors:
simply tensor product it with another tensor. For example if T is a (r, s)-tensor and S is a
(p, q)-tensor then T ⊗ S is a (r + p, s+ q)-tensor.
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There is a third common way people like to think/define tensors. It is easiest explained
through an example.

Example 3.5.4 . Let (V,+, ·) be a finite dimensional vector space and let T be a (1, 1)-tensor.
Then T maps one covector and one vector to a real number. However, if we only feed it the one
vector we are left with a linear map from V ∗ to R. This is, by definition, an element of (V ∗)∗,
but because our vector space is finite dimensional, Theorem 3.4.2 tells us that (V ∗)∗ = V .
We can thus define the map φT : V

∼−→ V by φ(v) = T (•, v), where • indicated an empty slot.
It is for this reason people often refer to a (1, 1)-tensor as a linear map that takes a vector to
a vector. Similar words are used for higher order tensors.

Remark 3.5.5 . Personally,8 I am not a fan of talking about (r, s)-tensors at all. The reason
for this is the notation is highly misleading as it fails to take into account the ordering of
the vector spaces in the Cartesian product. To clarify what I mean, the two spaces with
corresponding sets

V × V ∗ := {(v, ṽ) | v ∈ V and ṽ ∈ V ∗},
V ∗ × V := {(ṽ, v) | ṽ ∈ V ∗ and v ∈ V }

are not the same. The addition on the two spaces separately say ‘add two elements entry wise.
So the first entries are added together and the second entries are added together.’ Clearly,
then, we can not add an element from the former to an element of the later as the ordering
of the entries is switched. The only way we could do this addition would be to redefine our
notion of addition to account for this.

However, people would call a linear map from either of these spaces a (1, 1)-tensor, but a
tensor can be made into a tensor space (as we will do shortly) and so we should be able to
add elements in this set together, given some rule. However, we have just established that
there is no consistent rule in order to do this.

In the language of our second definition of a (r, s)-tensor, this problem is related to the
fact that one can’t simply compare V ⊗W and W ⊗ V for two general spaces. That is, they
are completely different spaces and need not be related by any sort of symmetry property.

This is a problem that is very rarely highlighted in textbooks,9 as the two spaces are
clearly isomorphic (all you are doing is switching the order of the entries around) but that I
think it is an important point to note.10 I therefore think it is best to just give the explicit
form of a tensor in terms of its tensor product array, as then there can be no confusion.
However, this is not what Dr. Schuller does in his course and so I shall not do this in the rest
of the notes.

3.6 Vectors and Covectors as Tensors

Corollary 3.6.1. A covector ϕ ∈ V ∗, i.e. ϕ : V
∼−→ R, is a (0, 1)-tensor.

Corollary 3.6.2. For a finite dimensional vector space, a vector v ∈ V is a (1, 0)-tensor.
8As in me, Richie.
9At least the ones I’ve read.

10An attitude past on to me by my lecturer at university who pointed this all out.
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3.7 Bases

So far we have talked about vectors without mentioning any numbers for them at all. That
is at no point have we said the vector (1, 2) ∈ R2 or something. In order to even make such a
statement, we need to introduce a basis, which tells us what the entries mean, for our vector
space. For example, (1, 2) ∈ R2 could mean ‘go along the x-axis 1 unit and along with y-axis 2
units’, in which case x and y are our choice of basis. Now obviously this is not the only choice
of basis for R2, it is simply one of an uncountably many. Often making this choice allows us
to progress greatly with the problem at hand, however one must always be conscious of the
fact that they made a choice and that anything derived using that choice could be completely
dependent on that choice, by which we mean that the result could be different had a different
choice been made. If one wants to assign the result of our calculation as a property of the
vector itself (e.g. its length) one needs to show that the result is completely basis independent.
It is therefore best to try and avoid bases all together and only use them when absolutely
necessary.

As we have already said, using a basis can often greatly simplify a calculation and so, with
the above comment in mind, we shall now proceed to studying bases.

Definition (Basis for Vector Space). Let (V,+, ·) be a vector space. A subset B ⊆ V is called
a (Hamel-)11 basis if

∀v ∈ V, ∃! finite F = {f1, ..., fn} ⊂ B : ∃!v1, ..., vn ∈ R : v = v1f1 + ...+ vnfn.

This is not the only way to define a (Hamel-)basis and indeed is not the most useful for
calculations. Instead we have the following definition.

Definition (Basis for Vector Space (linear independence)). Let (V,+, ·) be a vector space. A
subset B = {e1, ..., ed} ⊆ V is called a basis if

(i) The basis spans/generates V ; that is any v ∈ V can be written as a linear combination
of the basis elements, and

(ii) The basis elements are linearly independent; that is

d∑
i=1

λiei = 0 =⇒ λi = 0 ∀i ∈ {1, ..., d}.

Definition (Dimension of Vector Space). If there exists a basis B ⊆ V for a vector space
(V,+, ·) with finitely many elements, say d many, then we call d the dimension of the
vector space, denoted dimV = d.

Claim 3.7.1 . We claim that the dimension of a vector space is well defined. That is every
basis for V will have d elements.

Note that the definition above holds for both infinite and finite dimensional vector spaces,
as we did not require d < ∞. However from now on in these notes, we shall always assume
we are dealing with a finite dimensional vector space, unless otherwise specified.

11As apposed to a Schauder-basis. For more info. see Dr. Schuller’s Quantum Theory course.
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Remark 3.7.2 . Let (V,+, ·) be a vector space. Then having chosen a basis {e1, ..., en}, we
may uniquely associate

v 7→ (v1, ..., vn),

called the components of v with respect to the chosen basis, such that v = v1e1 + ...vnen.

Of course given the vector space (V,+, ·) and its dual space (V ∗,+, ·), you can define a
basis on each space completely independently of each other. However, there is a very nice,
and incredibly helpful, way we can related these bases.

Definition (Dual Basis). Let (V,+, ·) be a vector space and let {e1, ..., en} be a basis on it.
We define the dual basis of the dual space (V ∗,+, ·) as {ε1, ..., εn} satisfying

εi(ej) = δij =

{
1 if i = j,

0 otherwise.

Exercise

Prove that the constraint above uniquely defines the elements {εi, ..., εn} and show that
they do indeed form a basis for (V ∗,+, ·).
Hint: Use the linearity of the elements ϕ ∈ V ∗.

Example 3.7.3 . Let’s set N = 3 in our polynomial space (i.e. the highest order is cubed).
Then the set {e0, e1, e2, e3}12 is a basis for this space if we identify

e0(x) = 1, e1(x) = x, e2(x) = x2, x3(x) = x3.

It is easy to see that this is a basis because any polynomial of order 3 can be written a linear
combination of these terms. The dual basis for the dual space is given by

εa =
1

a!
∂a
∣∣
x=0

,

for a = 0, 1, 2, 3. Direct calculation shows that this satisfies our necessary condition.

3.8 Components of Tensors

Definition (Components of Tensors). Let T be a (r, s)-tensor over a finite dimensional vec-
tor space (V,+, ·) and let {e1, ..., edimV } be a basis for it with corresponding dual basis
{ε1, ..., εdimV }. Then define the (r + s)dimV many numbers

T i1...ir j1...js := T (εi1 , ..., εir , ej1 , ..., ejs) ∈ R

for i1, ..., ir, j1, ..., js ∈ {1, ...,dimV }. These are known as the components of T with respect
to the chosen basis.

12Note we start the index at 0 because it relates nicely to the order of the term. Obviously it’s just an index
and we can call it whatever we like so this is fine.
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Remark 3.8.1 . It is not actually necessary that you take the dual basis above in order to
define the components of a tensor. Any basis for the dual space will do, but that is almost
never done.

Knowing the components (and corresponding basis) of a tensor, we can reconstruct the
entire tensor.

Example 3.8.2 . Let T be a (1, 1)-tensor. Then T ij := T (εi, ej), then, using the multilinearity
of the tensor, we have

T (ϕ, v) = T

( dimV∑
i=1

ϕiε
i,

dimV∑
j=1

vjej

)
=

dimV∑
i,j=1

ϕiv
jT (εi, ei) =

dimV∑
i,j=1

ϕiv
jT ij .

Terminology . We call a raised index a contravariant index and a lower index a covariant index
and we stick with the convention that a vector has components with contravariant indices and
basis elements with covariant indices and covectors the other way around. This makes contact
with what the naming of the contravariant/covariant order of a tensor given previously.

In order to not always have the summation symbols everywhere Einstein came up with a
clever notation, known as Einstein summation convention, whereby any repeated indices
where one is up and one is down is implicitly summed over. For example

viei =
∑
i

viei.

This notation instantly tells us that any time the same index label appears more then twice,
we are dealing with something ill-defined. Equally it is not good to have the same index
appearing both up or both down. That is we don’t want things like

T ijS
i
i or viwi.

With the Einstein summation convention, one can only add two terms that have the same
indices in the same places, so

T ijk + Sijk = Rijk

is good, but
T ijk + Sijk = Rij

k

is not well defined. In note of Remark 3.5.5, it is also not well defined to write things like

T ijk + Si jk ,

unless some sort of property is given, e.g. Si jk = 3Sijk.

Remark 3.8.3 . Note that we can only really use the Einstein summation convention because
we are considering multilinear maps. That is we could have

ϕ(v1ei) = ϕ

(∑
i

viei

)
or ϕ(v1ei) =

∑
i

ϕ(viei),

and it is only because the multilinearity equates the two that we’re OK.



4 | Differentiable Manifolds

So far we have looked at topological manifolds, which allowed us to talk about the continuity
of a curve γ : R → M. If we are to (and we will) associate the motion of a particle in
spacetime as a curve on a manifold, we want more then just continuity; we want to be able
to associate a velocity to each point of the curve. Roughly speaking, we think of the velocity
of a curve as a tangent vector to the curve which we obtain by differentiating the curve.

The question is, then, is the structure we already have on our d-dimensional topological
manifold (M,O) sufficient in order to talk about differentiability or do we need some more
structure? The short answer is ‘no, you need more structure.’ In this lecture we will show this,
while also working out what extra structure we need in order to talk about differentiability
of curves.

In fact, we wish to define a notion of differentiable for more then just curves, we wish to
define it also for: functions, f :M→ R, and maps, ϕ :M→N .

4.1 Strategy

Let’s first consider curves, γ : R→M. Recall in lecture 2 we said that we can assign properties
to manifolds by considering the chart representatives, which were maps x ◦ γ : R→ U ⊆ Rd.
We already have a notion of differentiability of such curves from undergraduate courses, and
so we seek to use this in order to define what we mean for the curve γ : R → M to be
differentiable.

Let’s consider the part of our curve that lies in the chart domain γ : R → U .1 Once we
have worked out differentiability here, we can extend it to a global notion for the whole curve.
Recall that if we are going to do this ‘lifting’ of notion to the manifold level, we have to make
sure the lifted notion is chart independent, i.e. it doesn’t matter which chart we use, we
always get the same result. When we encountered this before we were fine, because we knew
that the composition of continuous maps is continuous and so our chart transition maps were
continuous. However, the continuity of the chart transition map does not guarantee their
undergraduate differentiability as there could be a sudden turning point in the curve.

At first sight, our strategy doesn’t work out. However, there is a remedy to this that we
hinted at in lecture 2, it is the content of the next section.

1We should really rename it something like γU , but we don’t want to clutter notation too much, so shall
just call it γ.

24
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R (U ∩ V )

y(U ∩ V )

x(U ∩ V )

γ

y ◦ γ

x ◦ γ

y

x

y ◦ x−1

Figure 4.1: Two charts (U, x) and (V, y) used to represent a physical curve γ. It is
assumed that one knows the map x◦γ is so called ‘undergraduate differentiable’. However,
one can not yet conclude whether γ itself is differentiable as the continuity of the chart
transition map y◦x−1 does not guarantee differentiability (there could be a sudden turning
point in the curve representation).

4.2 Compatible Charts

The problem mentioned above stems from the fact that we took (U, x) and (V, y) to be any
charts for our topological manifold (M,O). To emphasise this, we can say that we took
them from the maximal atlas Amax. If instead we had insisted that our charts come from a
smaller atlas that we knew contained no overlapping charts with only continuous (and not
differentiable) charts, we could solve our problem. In other words, we ‘tear out’ any pages of
our atlas that correspond to chart transition functions that are not differentiable. Now we
are not guaranteed that after doing this we are left with an atlas, as we may no longer cover
the whole space, but if we do, then we stand a much better chance at defining what we mean
by the differentiability of a curve. So we consider a restricted atlas.

Note this is a huge choice to make. By doing this, anything we want to talk about later
on that relies on differentiability of the curve can only be discussed in a chart if that chart
comes from our restricted atlas.

Definition (Compatible Charts). Two charts (U, x) and (V, y) of a topological manifold
(M,O) are called �-compatible2 if either

(a) U ∩ V = ∅, or

(b) U ∩ V 6= ∅ and the chart transition maps (x ◦ y−1) : y(U ∩ V ) → x(U ∩ V ) and
(y ◦ x−1) : x(U ∩ V )→ y(U ∩ V ) are ‘undergrad’ �.3

Definition (Compatible/Restricted Atlas). An atlas A� is a �-compatible atlas if all of
its charts are �-compatible.

Definition. A �-manifold is the triple (M,O,A�).
2I tried to get a flower like Dr. Schuller uses, but overleaf was not having it. Apologies for me meagre �.
3That is they have the property � as maps from Rd → Rd that we know from undergraduate courses.
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Now it might be possible that two separate criteria for ‘tearing our pages’ in order to obtain
a �-compatible atlas exist. That is there might be more then one atlas that is �-compatible.
In this case, we have to make a choice about which one to use, but must always remember
that we have made this choice, as one of these atlases might allow a different property, say
�, to be defined, whereas the other might not. Physically, this is obviously a very important
thing to keep in mind, as � and � are physical properties of the curve and therefore don’t
depend at all on what charts or atlases we choose to use, so we must make sure we pick the
ones that match up to the physics.

Before moving on, let’s consider the types of things � can be.

� Undergraduate �

C0 C0(Rd → Rd), continuous w.r.t. the standard topology on
Rd.

C1 C1(Rd → Rd), once differentiable with continuous result
w.r.t. the standard topology on Rd.

Ck Ck(Rd → Rd), k-times continuously differentiable.
Dk Dk(Rd → Rd), k-times differentiable, don’t need to be con-

tinuous.
C∞ C∞(Rd → Rd), infinitely differentiable with continuous re-

sult, known as smooth.
Cω Cω(Rd → Rd), analytic functions (can be Taylor expanded).
C∞ C∞(R2n → R2n), dimM = 2n for integer n, they satisfy

the Cauchy-Riemann equations pairwise. This gives us a
complex manifold.

Theorem 4.2.1 (Whitney Theorem). Any Ck-atlas ACk for k ≥ 1 for a topological manifold,
contains as a subatlas a C∞ atlas.

We shall not prove this theorem, but simply give an motivation for it via the following
example.

Example 4.2.2 . Say we were only interested in curves that were C2, so the third derivative
was discontinuous. In order to talk about such curves we would need a C2-atlas. However,
any function that is C3 is also C2 and so we would still be able to talk about these curves
on a C3-atlas as C3 ◦ C2 = C2, roughly speaking. That is, if we insist that our transition
functions are C3(Rd → Rd) then we can still obtain a well defined notion for the curve being
C2. Repeating this again, it follows that we could use a C∞-atlas in order to describe our
curves.

Note that the theorem does not say that we can turn a C2 curve into a C∞ curve, only
that we can talk about it on both a C2-atlas and a C∞-atlas.

This is a very useful theorem for physics, because we now don’t need to worry about ‘how
many derivatives should I be worried about ensuring?’ Just make sure it’s at least C1 and then
take the subatlas. Thus, we may, without loss of generality, always consider C∞-manifolds, or
smooth manifolds (unless we wish to define Taylor expandability or complex differentiability,
etc).
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4.3 Diffeomorphisms

Recall that whenever we introduce a new structure to our objects that it is always worth study-
ing the structure preserving maps. These maps are generally known as isomorphisms. For
two sets, the isomorphism is a bijection. For topological spaces we saw that the isomorphism
is a continuous, bijection whose inverse is also continuous, we called these homeomorphisms.
Two objects that are related by an isomorphism are said to be isomorphic.

Definition (Smooth Maps). Let (M,OM,AM) and (N ,ON ,AN ) be two smooth manifolds
of dimension m and n, respectively. A map ϕ :M→N is said to be C∞ (or smooth) if the
map y ◦ ϕ ◦ x−1 is undergrad C∞ for charts (U, x) ∈ AM and (V, y) ∈ AN .

U V
ϕ

x y

Rm Rn

y ◦ ϕ ◦ x−1

Remark 4.3.1 . Note that we just gave the definition above for two charts (U, x) and (V, y).
We already know that if it holds for one chart it will hold for all because our manifolds are
smooth and therefore switching charts is C∞. That is we have the following diagram:

U V
ϕ

x y

Rm Rn

y ◦ ϕ ◦ x−1

x̃ ỹ

Rm Rn
ỹ ◦ ϕ ◦ x̃−1

C∞ C∞

Definition (Diffeomorphism). Let (M,OM,AM) and (N ,ON ,AN ) be two smooth mani-
folds. They are isomorphic if there exists a bijection ϕ : M → N such that ϕ and ϕ−1 are
C∞ maps. Such a map is known as a diffeomorphism and the manifolds are said to be
diffeomorphic.

We can think of diffeomorphisms as relating two surfaces that can be ‘moulded’ into each
other without cutting/tearing/folding the surface. For example, the surface of a sphere as a
differential manifold is diffeomorphic to the surface of a potato,4 but it is not diffeomorphic

4Provided there’s not sharp edges and/or holes in the potato.
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to a doughnut. In other words, at the smooth manifold level, things don’t have a shape yet,
but are made out of sort of fluidy-substance.5

Theorem 4.3.2. The number of C∞-manifolds one can make from a given C0-manifold (if
any), up to diffeomorphism6 is given by the following table:

dimM No. C∞-manifolds

1 1
2 1
3 1
4 uncountably infinitely many
5 finitely many
6 finitely many
7 finitely many
...

...

The first three results in the table are the so-called Moise-Radon theorems, and the 5,6,7,...
results are shown using an area of topology known as surgery theory. Unfortunately as physi-
cists, we are most interested in dimM = 4 for spacetime. Ahh, Sod’s law!

5This is not a technical term, please do not quote me on it.
6That is, any two C∞-manifolds that are diffeomorphic count as the same one.



5 | Tangent Spaces

The aim of the lecture is going to be answer the following question: what is the velocity of a
curve γ at a point p ∈M?

p
γ

M

In doing this, we first want to completely forget everything we already know about what
we mean by ‘velocity’. We are going to rediscover what it means during this lecture.

5.1 Velocities

Definition (Scalar Fields). The vector space with set

C∞(M) := {f :M→ R | f is a smooth function}

equipped with point-wise addition (f ⊕ g)(p) = f(p) + g(p) and s-multiplication (λ� f)(p) =
λ · f(p), is known as the space of scalar fields (or smooth functions) onM.

Example 5.1.1 . An example of a smooth function on M is a temperature distribution. To
each point in the room (which is M) we associate a real number, the temperature of that
point.

Remark 5.1.2 . We should actually be a little careful with the terminology above. A smooth
function is defined for any two manifolds of arbitrary dimension, provided the map is smooth
obviously. A scalar field is strictly a map to a one-dimensional manifold, in this case the real
numbers R. The notation C∞(M) means that we are considering the map to the reals. We
would indicate a general smooth function more explicitly as C∞(M,N ) or something.

Definition. Consider a smooth manifold (M,O,A) and a curve γ : R→M that is at least
C1. Suppose γ(λ0) = p ∈M. The velocity of γ at p is the linear map

vγ,p : C∞(M)
∼−→ R,

defined by
vγ,p(f) := (f ◦ γ)′(λ0).

29
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The intuition here is that as you run along in the world (i.e. move along γ) you ask how
something (the scalar field) changes in your direction of motion. So you take the directional
derivative of the scalar field. We will make this a lot more concrete shortly.

5.2 Tangent Vector Space

Definition (Tangent Vector Space). For each point p ∈M we define the vector space, known
as the tangent (vector) space toM at p, whose set is

TpM := {vγ,p | γ smooth curve through p},

and whose addition and s-multiplication is given by

(vγ,p ⊕ vδ,p)(f) := vγ,p(f) + vδ,p(f),

(α� vγ,p)(f) := α · vγ,p(f).

We need to show that the right-hand sides of the last two expression do indeed lie in TpM.
That is, we need to show that

(i) There exists a τ : R→M such that α� vγ,p = vτ,p, and

(ii) There exists a σ : R→M such that vγ,p ⊕ vδ,p = vσ,p.

Proof. It is clear that both the right-hand side expressions will be elements of Hom(C∞(M),R),
but we need to check that they are velocities to some curves through p. Let’s consider them
in tern

(i) Let λ0 ∈ R such that γ(λ0) = p. Construct the curve τ : R→M by

τ(λ) := γ(αλ+ λ0) = (γ ◦ µα)(λ),

where µα : R → R defined by µα(λ) := αλ + λ0. We claim this curve satisfies our
condition.

First note that τ(0) = γ(λ0) = p and so it passes through the point, which we need.
Then

vτ,p(f) := (f ◦ τ)′(0)

= (f ◦ γ ◦ µα)′(0)

= α · (f ◦ γ)′(λ0)

=: α · vγ,p(f),

where we have used the multidimensional chain rule to go from the second to third line
along with µα(0) = λ0 and µ′α(0) = α. Since this holds for any f ∈ C∞(M), we get the
result.

(ii) This is slightly more involved. In order to show it, we shall introduce a chart (U, x).
However, as we have explained already, it is important that this choice of chart plays
no vital role in the result; that is the result must be chart independent, so we will have
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to check this at the end. Again let λ0 ∈ R such that γ(λ0) = p. Similarly, let λ1 ∈ R
such that δ(λ1) = p.

Construct the curve σx : R →M, where the subscript reminds us that we are working
in a chart, by

σx(λ) := x−1
(
(x ◦ γ)(λ0 + λ) + (x ◦ δ)(λ1 + λ)− (x ◦ γ)(λ0)

)
.

Again we claim this curve satisfies our condition. First, we need to check it goes through
the point p, and a quick calculation shows that σx(0) = p, so we can proceed. We have

vσx,p(f) := (f ◦ σx)′(0)

=
(
f ◦ x−1 ◦ x ◦ σx

)′
(0)

Now we have (f◦x−1) : Rd → R and (x◦σx) : R→ Rd and so we use the multidimensional
chain rule for the derivative. We have1

vσx,p(f) := (xi ◦ σx)′(0) · ∂i
(
f ◦ x−1

)∣∣
(x◦σx)(0)

=
(
(xi ◦ γ)′(λ0) + (xi ◦ δ)′(λ1)

)
· ∂i
(
f ◦ x−1

)∣∣
x(p)

= (f ◦ γ)′(λ0) + (f ◦ δ)(λ1)

=: vγ,p(f) + vδ,p(f),

where we used the ‘evaluated at’ notation | in order to reduce potential confusion, and
where to get to the penultimate line we did the multidimensional chain rule in reverse
(i.e. we did the steps up to that point backwards but not with γ and δ). The final line
make no reference to the chart (U, x) and so we know we can use any chart in our atlas
to do this and so the result is chart independent. Finally, again since this holds for a
general f ∈ C∞(M) we get the result.

Remark 5.2.1 . Dr. Schuller gives some nice picture descriptions of the above proofs in his
lecture (starting about 39:00), these are worth looking at. I have not drawn them here as
they will be a reasonable amount of work (especially the (ii) property) in Tikz, and I’m feeling
too lazy for that, but they really are worth seeing, so go look at them if you haven’t already!

It is important to note that in all of the above we are always considering the same point
p ∈M. It does not make sense to add two velocities that are the tangents at different points,
i.e. vγ,p ⊕ vδ,q only makes sense when p = q. One way to remember this is to think about
the velocities being little arrows in planes tangent to the manifold. For example ifM = S2,
the 2-sphere,2 then we have something like Figure 5.1. Thought about this way, it becomes
clear why we can’t add velocities that are tangent to different points: they live on completely
separate R2 planes, so it doesn’t make sense to add them. You might think ‘well can’t we
just put the velocity at q onto the tangent plane at p?’ The proper answer to this question
comes later, but the short answer is ‘only if we take into consideration the so-called intrinsic
curvature of the manifold’.

1We use an index i to denote which element in Rd we are considering. ∂i obviously means the derivative
w.r.t. the ith element.

2For those unfamiliar, a 2-sphere is what we think of as the surface of a 3d ball. The surface is 2-dimensional
and so we call it the 2-sphere.
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p

q

S2

Figure 5.1: Tangent planes at two points p, q ∈ M = S2. The arrows are the tangent
velocities to curves (not drawn) on the manifold. The two velocities at p (black arrows)
can be added because they live in the same tangent space, but it does not make sense to
add one of them to the velocity at q blue arrow.

Remark 5.2.2 . As the above discussion highlights, we often think of the velocities as being
little arrows that lie tangent to our curves and ‘point out’ of the manifold. In order to do
this, we obviously need to first embed our manifold into a higher dimensional space (so we
look at the 2-sphere in R3). However, as soon as we start considering manifolds of dimension
d ≥ 3 then we have a problem: we need to picture a at least 4-dimensional space to embed in,
and I can’t see 4D spaces.3 Besides that obstacle, when we start talking about the universe,
if we embed it into something we then are talking about things that lie outside the universe,
which is a rabbit whole we do not want to go down.4

Luckily, our formulation of what a velocity is made no reference whatsoever to some higher
dimensional embedding space. It was defined intrinsically to the manifold itself. This seems
promising, but we need to make sure that the two ideas coincide with each other. The answer
is that they do and so we can choose how we want to think about our tangent vectors on a
case by case basis: taking the embedding idea when we can for some nice intuition, and using
the intrinsic definition when we are dealing with things too hard to imagine.

3If you can, props!
4I’ll take the blue pill, Morpheus.
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5.3 Components of a Vector w.r.t. a Chart

Let (U, x) be a chart of a smooth manifold (M,O,A) and let γ : R → M be a curve that
passes through point p ∈ U as γ(0) = p. Now we have the calculation

vγ,p(f) := (f ◦ γ)′(0)

= (f ◦ x−1 ◦ x ◦ γ)′(0)

= (xi ◦ γ)′(0) · ∂i
(
f ◦ x−1

)∣∣
x(p)

The first thing to note, as we touched on before, is that the index on ∂i tells us which entry
to derive by. That is it make no reference whatsoever to x, but simply says ‘what ever the ith

entry is, derive by that.5 Now this is a lot of writing and so we introduce some new notation
in order to simplify it: we define(

∂f

∂xi

)
p

:= ∂i
(
f ◦ x−1

)∣∣
x(p)

, and γ̇ix(0) := (xi ◦ γ)′(0),

where the colours are just used to show that the terms appear on both sides. The first thing
we have to point out is that this is just notation. The first term looks an awful lot like a
partial derivative, however strictly it is something completely different; it is just notation for
the right-hand side. Obviously this notation is not done by accident and it will turn out that
it will posses all of the properties we’d want from a partial derivative, but that still doesn’t
make it one.

Given the above, we can write down the velocity to a curve at point p in the following
form

vγ,p(f) = γ̇ix(0) ·
(
∂

∂xi

)
p

(f),

or, as a map, we can write

vγ,p = γ̇ix(0) ·
(
∂

∂xi

)
p

.

Definition (Components of a Vector w.r.t. a Chart). We call γ̇ix(0) the ith component of
the velocity vector at point p ∈M w.r.t. the chart (U, x).

Definition (Basis Elements of TpU). We call
(
∂
∂xi

)
p
the ith basis element of TpU w.r.t.

which the components need to be understood.

Note that in the above, we only have a basis element for TpU , not TpM as the chart is
only defined for the subset U .

Corollary 5.3.1. The action of a basis element on the jth coordinate function xj satisfies6(
∂

∂xi

)
p

(xj) = δji =

{
1 if i = j,

0 otherwise.
5This is analogous to the fact that given f : R→ R we define f ′ : R→ R completely independently of what

variable we’re using. So f ′ = df
dx

is not a general expression, but is a notation choice once we have decided
that x is our variable.

6Note we have used the angle bracket here. This makes sense as xj : U ⊆M→ R is C∞ (as its a smooth
manifold) and

(
∂
∂xi

)
p
∈ TpM is a vector. This highlights the benefit of using this notation.
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Proof. Use the fact that xj ◦x−1 only gives us the jth entry of x(p). Obviously, then, if we try
to differentiate w.r.t. any of entries we get 0 (as the entry is already 0), but if we differentiate
w.r.t. this entry we get 1. This is just δji .

5.4 Chart Induced Basis

Theorem 5.4.1. Let (M,O,A) be a d-dimensional smooth manifold. The set{(
∂

∂x1

)
p

, ...,

(
∂

∂xd

)
p

}
constitutes a basis for the tangent space TPU , and it’s known as the chart induced basis.

Proof. We have already known that they generate TpU as any vector in TpU can be written
in terms of them. All that remains to be shown is that they are linearly independent, that is
we require that

d∑
i=1

λi
(
∂

∂xi

)
p

= 0 =⇒ λi = 0 ∀i.

Consider the action on the jth coordinate function, xj . We have

d∑
i=1

λi
(
∂

∂xi

)
p

(xj) =
d∑
i=1

λiδji = λj

and so we get the result.

Corollary 5.4.2. The dimension of the tangent space is equal to the dimension of the manifold

dimTpM = dimM.

Proof. This just follows from the fact that there are d-basis elements for TpU for all the chart
domains and the fact that the d came from the dimension ofM.

5.5 Change of Vector Components Under Change of Chart

One often comes across statements like ‘a vector transforms as [insert equation] under a change
of chart’. However, we know that this statement is not complete as vectors (and also tensors)
are abstract objects that are completely independent of the charts. The velocity of the bird
is the velocity of the bird. So the only thing we could insert into the statement is ‘they
don’t transform’, but this in itself is not a super useful for calculations. A better, and much
more useful, statement is ‘the components7 of a vector transforms as [insert equation] under
a change of chart’.

Let (U, x) and (V, y) be overlapping charts for a smooth manifold (M,O,A) and p ∈ U∩V .
If X ∈ TpM then we can decompose it in either chart,

X = Xi
(x)

(
∂

∂xi

)
p

and X = Xi
(y)

(
∂

∂yi

)
p

7The components of a vector are simply given in relation to the basis, see Remark 3.7.2.
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To study how these relate, consider the following(
∂

∂xi

)
p

(f) := ∂i
(
f ◦ x−1

)∣∣
x(p)

=
(
f ◦ y−1 ◦ y ◦ x−1

)∣∣
x(p)

= ∂i
(
yj ◦ x−1

)∣∣
x(p)
· ∂j
(
f ◦ y−1

)∣∣
y(p)

=

(
∂yj

∂xi

)
p

·
(
∂f

∂yj

)
p

=⇒
(
∂

∂xi

)
p

=

(
∂yj

∂xi

)
p

(
∂

∂yj

)
p

Inserting this into the fact that X can be expressed in either basis, we have

Xj
(y)

(
∂

∂yj

)
p

= Xi
(x)

(
∂

∂xi

)
p

= Xi
(x)

(
∂yj

∂xi

)
p

(
∂

∂yj

)
p

=⇒ Xj
(y) = Xi

(x)

(
∂yj

∂xi

)
p

,

where to get to the last line we have used the fact that
(
∂
∂yj

)
p
is a basis and so the coefficients

must be equal.
It is important that we evaluate the derivative at the point p ∈M as we did not say that

our transformation needed to be linear. Indeed the transformation can be wildly nonlinear
(provided the expression still makes sense), but once we evaluate this result at a point we are
just left with a number, which is exactly what we want.

Remark 5.5.1 . In special relativity, one often hears people talking about Minkowski vector
space, i.e. the vector space whose set is made up of the positions xµ. This goes against
what we said at the start of lecture 3: "We wish to emphasise here that we will not equip
space(time) with a vector space structure." A counter would be ‘but the coordinate transfor-
mations work!’, however the transformations considered in special relativity are not general
transformations: we restrict ourselves to linear transformations, which we further restrict to
be Lorentz transformations. This seems like a reasonable thing to do, but we should be able
to study special relativity in polar coordinates if we want to.8 We can make such a trans-
formation (Cartesian to polar) and the velocities at a point will change via linear maps as
described above, but the position space will not transform linearly! In other words, it is an
over structuralisation to equip Minkowski space with a vector space structure, as in doing
so we must restrict ourselves to Lorentz transformations. This just highlights again that the
positions are not vectors, it is the velocities that are the vectors.

5.6 Cotangent Spaces

We have constructed the tangent space as a vector space, but our work from the lecture 3
tells us that we can take the dual to this space.

8As, once again, the choice of chart/coordinates has no impact whatsoever on the real world physics.
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Definition (Cotangent Space). Let TpM be the tangent space to some point p ∈ M. The
dual of this space is known as the cotangent space

T ∗pM≡ (TpM)∗ := {ϕ : TpM
∼−→ R}.

Definition (Gradient of f at p). Let f ∈ C∞(M). Then we can define the linear map

(df)p : TpM
∼−→ R, (df)pX := X(f).

Clearly this makes (df)p an element of the cotangent space. It is known as the gradient of
f at point p ∈M.

Remark 5.6.1 . Note that we do not need to use a chart in order to define the gradient, as one
might think we would from undergraduate classes.

The gradient is a (0, 1)-tensor over the vector space TpM and so we can find its components
w.r.t. the chart induced basis using the method discussed previously:

(
(df)p

)
j

:= (df)p

((
∂

∂xj

)
p

)
=

(
∂f

∂xj

)
p

= ∂j
(
f ◦ x−1

)∣∣
x(p)

.

Corollary 5.6.2. The chart induced basis for T ∗pM is the set

{(dx1)p, ..., (dx
d)p},

where xi : U → R are the coordinate maps for the chart (U, x).

Proof. By direct calculation we have

(dxi)p

((
∂

∂xj

))
:=

(
∂xi

∂xj

)
p

= δij ,

which is the dual basis of dual space condition.

5.7 Change of Components of a Covector Under a Change of Chart

Just as with the vector above, the covector itself remains invariant under a change of charts
(its a tensor!), but the components change under a change of chart. Proceeding analogously
to the vector component calculation we get: if ω ∈ T ∗pM and (U, x) and (V, y) are the two
charts, then

ω(y)j =

(
∂xi

∂yj

)
p

ω(x)i.

Note that here the fraction is flipped in comparison to the vector components (i.e. the x and
y have changed places). This reflects the fact that ω is a covector and so its components
transform inversely to the components of a vector. This highlights an important point that
we have hinted at a few times: we must not think of the gradient as a vector. It is a covector
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and its transformation properties prove it. If you need extra convincing, if it was a vector,
we would expect it to transform under the chain rule, but that would give us

(
(df)p

)
(x)i

=

(
∂f

∂xi

)
p

=

(
∂yj

∂xi

)
p

(
∂f

∂yj

)
=

(
∂yj

∂xi

)
p

(
(df)p

)
(y)j

,

which is in contradiction to our result!
Exercise

Show that the above transformation property is true.
Hint: Write ω = ω(x)i(dx

i)p

There is a general rule to check that your transformation properties are right: look at
the left-hand side and look at the placement of indices (plural for the case of higher order
tensors) and which basis labelling they correspond to (x or y). Every lower index becomes a
denominator index in your fraction and comes with the relevant basis label. You then write
the component in the new coordinate (i.e. ω(x)i) and then, as there was no x or i on the
left-hand side, use the Einstein summation convention to remove it from the right-hand side
by placing it in the numerator. When you consider higher order tensors, you just make sure
you pair up the correct indices with each other: for example

T ij(x) =

(
∂xi

∂yk

)
p

(
∂xj

∂y`

)
p

T k`(y),

where the first indices (i and k) are paired and the second indices (j and `) are paired. We will
see this rule more generally when we consider the change of components of tensors shortly.
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So far we have discussed a single tangent space and vectors lying in it. What we now want to
study are vector fields, which is essentially a vector for every point on the manifold. We need
to give a proper technical way to introduce vector fields, as simply saying ‘imagine a vector at
every point’ isn’t good enough (two people might imagine differently). The answer to doing
this is known as the theory of bundles.

6.1 Bundles, Fibres and Sections

Definition (Bundle). A (smooth) bundle is a triple (E, π,M) where E andM are smooth
manifolds known as the total space and the base space, respectively. π : E →M is a smooth,
surjective map, known as the projection map.

Notation. It is also common to denote a bundle in the following notation E
π−→ M. It is

important to know, though, that the bundle is the complete triple and not just the map, as
one might think using this notation.

Definition (Fibre over p). Let (E, π,M) be a bundle. We define the fibre over p ∈ M as
preimπ(p).

Definition (Section). A section, σ, of a bundle (E, π,M) is a map σ : M→ E such that
(π ◦ σ) = 1M, the identity onM.

As we shall see shortly, sections are the fields over our manifolds. The rough idea is that
we make the fibres the tangent spaces to each point and then by taking a section, we pick one
vector from each tangent space, giving us a vector field.

Example 6.1.1 . In quantum mechanics, we are taught to think of the wavefunction as a func-
tion. This is technically not true. The wavefunction is a scalar field over the base space, and
a scalar field is not a function (despite us maybe thinking it is). More technically, the wave-
function is a section over a C-line bundle (that is a bundle whose fibres are the complex line).
This is actually an important distinction when one comes to studying quantum mechanics in
curved coordinates as the covariant derivative1 acts in a non-trivial manner on sections.

1Which we will discuss later.

38
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p q

M

E

Figure 6.1: Example of a bundle and fibre. The total space, E, is the surface of the
cylinder and the base space, M, is the ring. The bundle is the triplet consisting of E,
M and a smooth, surjective projection map π : E →M . The preimage of the the point p
w.r.t. the projection map π is the green line — that is π maps every point on the green
line to p — known as the fibre over p. Similarly the blue line is the fibre over q. The
section w.r.t. p, σp : M → E, maps p to a point within its fibre (a point on the green
line). A map τ : M → E which maps p to a point in q’s fibre (the blue line) is not a
section, as (π ◦ τ)(p) = q 6= 1M (p). The complete section is the set of points formed by
taking one point from each fibre.

6.2 Tangent Bundle of Smooth Manifold

Let (M,O,A) be a smooth manifold. We define the tangent bundle as the bundle whose
base space is our smooth manifold and whose total space has the set2

TM :=

•⋃
p∈M

TpM,

where the dot means ‘disjoint union’. The projection map is given by

π : X 7→ p,

where p is the unique point such that X ∈ TpM.
We need to show how to turn the above set TM into a smooth manifold (as we need

for a bundle), but first two quick comments: it is important that we take the disjoint union
above as this allows us to identify each vector with its base point p. It is because we take the
disjoint union that we can say the unique point; and the projection is surjective as we took
the union over all p ∈M and so we hit every element inM.

We now need to make TM into a smooth manifold, in such a way that π : TM→M is
a smooth map. So we need to define a topology on TM, the question is ‘how do we do this?’
With a little thought the answer becomes clear: we already have a topology on our base space
and if we are going to require π to be smooth, why don’t we just use the coarsest3 topology

2We shall make this into a smooth manifold below.
3Recall coarsest means it has the least number of elements such that π is just continuous.
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on TM such that π is continuous (as continuity is needed for smoothness). This topology is
known as the initial topology w.r.t. π. It is defined simply as4

OTM := {preimπ(U) |U ∈ O}

So far we have a topological manifold (TM,OTM) and a continuous map π to a smooth
manifold (M,O,A). We now need to define a C∞-atlas for (TM,OTM) in such a way that
our map becomes smooth. As with the topology, we are going to construct this atlas from A.

The question is ‘how?’ Well we know that X ∈ TM is described by two pieces of infor-
mation: it is a vector and it has a base point. We can easily obtain the coordinates of the
base point by simply projecting X down using π and then using our atlas on M to find its
coordinates. What about the vector part? Well, we have a chart onM and so we can induce
a chart on the tangent space and decompose X as

X =: Xi
(x)

∂

∂xi
.

It is the components Xi
(x) that we want to use, but we want to get them by just using the

chart (U, x). The answer is very straight forward: just consider the gradient of the chart
maps. That is

Xi
(x) = (dxi)π(X)(X).

So we construct the atlas
ATM := {(TU, ξx) | (U, x) ∈ A},

where
ξx : TU → R2·dimM,

given by

ξx(X) =
(

(x1 ◦ π)(X), ..., (xd ◦ π)(X)︸ ︷︷ ︸
(U,x)-coordinate of π(X)

, (dx1)π(X)(X), ..., (dxd)π(X)(X)︸ ︷︷ ︸
Vector components w.r.t. (U,x)

)
We also need the inverse map:

ξ−1
x : R2·dimM → TU.

With a bit of thought it is clear that it must satisfy

ξ−1
x (α1, ..., αd, β1, ..., β

d) := βi
(
∂

∂xi

)
x−1(α1,...,αd)

= βi
(
∂

∂xi

)
π(X)

.

Now we need to check that these maps are smooth (as we need a smooth atlas). Consider
4In the tutorial we show that OT∗M is a topology for the cotangent bundle. An analogous proof can be

inserted here to show that OTM is also a topology.
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another chart (V, y) with V ∩ U 6= ∅, we have5

(
ξy ◦ ξ−1

x

)
(α1, ..., αd, β1, ..., βd) := ξy

(
βm
(

∂

∂xm

)
π(X)

)

=

(
..., (yi ◦ π)

(
βi
(
∂

∂xi

)
π(X)

)
, ..., ..., (dyi)π(X)

[(
βm
(

∂

∂xm

)
π(X)

)]
, ...

)

=

(
..., (yi ◦ x−1)(α1, ..., αd), ..., ..., βm

(
∂yi

∂xm

)
π(X)

, ...

)
=
(
..., (yi ◦ x−1)(α1, ..., αd), ..., ..., βm∂m

(
yi ◦ x−1

)∣∣
(α1,...,αd)

, ...
)
,

where to go to the third line we have used the fact that π(X) = p = x−1(α1, ..., αd) and
to get to the last line we have used the definition for the derivative fraction along with
(x ◦ π)(X) = x(p) = (α1, ..., αd). Now (yi ◦ x−1) is smooth because A is smooth and so the
above result is smooth. We therefore have a smooth atlas ATM.

Definition (Tangent Bundle). The triple (TM, π,M) is a bundle, known as the tangent
bundle.

This all seems rather abstract and complicated, but the following example shows it’s
actually rather natural and intuitive.

Example 6.2.1 . LetM = S1 (a circle) and let the fibres just run straight up and down. The
further up/down the fibre one goes, the greater the value of the vector, with going downwards
corresponding to placing a minus sign in front of the vector.

U here is a small part of the circle and is mapped by x to a open interval in the real line.
TU is the set of fibres that run through U . These are mapped via ξx to R2 in the following
way. Consider a point on one of the fibres, call it X. The horizontal axis value in the R2

chart is given by the value the base point p = π(X) ∈ M takes in the R chart, as mapped
by x. The vertical value in the R2 chart is just given by the size of the vector (as it is only
one-dimensional so the component is the size) and is plotted accordingly. That is, the vertical
axis is ‘length of vector’, again with the negative axis corresponding to a vector that is lower
down on the fibre then the base point.

M

E

TU

UR

x

R2ξx

5Sorry this doesn’t look very nice. It’s lots of brackets and indices!
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6.3 Vector Fields

We just put in a lot of work to check/prove that the set TM can be made into a smooth
manifold and so we have a bundle. It is reasonable to wonder why we did such a crazy
calculation. The answer is that it allows the next definition.

Definition (Smooth Vector Field). A smooth vector field is a smooth section on the
tangent bundle. That is

χ :M→ TM, π ◦ χ = 1M.

Remark 6.3.1 . Note we have used the Greek letter χ here to denote a smooth vector field. We
do this to make the distinction between a vector X ∈ TpM and a smooth vector field χ. We
will continue to use Greek letters for fields (in general, so we will also use Greek letters for
covector fields and tensor fields) in this lecture.6 As we shall see shortly, we also introduce a
new notation for the action of smooth vector fields. We shall point these out as we introduce
them.

The smooth part of the above definition is what all the work was for. Intuitively when we
think of a vector field (a vector at each point) we see a smooth vector field, i.e. one where
the vectors appear to naturally flow from one to another, rather then just pointing randomly
at each point. Smooth vector fields will obviously play a vital rule in general relativity: the
velocity of a particle is a smooth vector field over the manifold that is the worldline of the
particle. If this vector field was not smooth, it would correspond to the particle’s velocity all
of a sudden changing, which we know is not physical.

6.4 The C∞(M)-Module

So far we have a definition for a smooth vector field, but we have no way of adding them
together or scaling them in any way. This is something we clearly want to be able to do, and
so we want to try and make it into a vector space over some field. The addition is straight
forward, just add the vectors in the tangent spaces together and take the result to be the new
vector at that point. What about scaling? We don’t want to limit ourselves to only being
able to scale the smooth vector field uniformly, i.e. by the same amount at all p ∈M. So we
need something that is defined all over M but that can take different values at each point.
This is just a scalar field.

So we want to try and turn the set of smooth sections over the tangent bundle into a
C∞(M)-vector space. There is a problem, though. Recall the definition

C∞(M) := {f :M→ R | f is a smooth function}.

It is possible that a non-vanishing7 element of C∞(M) can vanish at some points, i.e. there
are points p ∈ M that are mapped to 0 ∈ R. We cannot turn C∞(M) into a field, then, as
we don’t have an inverse under multiplication for every element (we can’t invert the points
that vanish!). The best we can do, then, is to turn it into a ring. We clearly have a neutral
element – the elements that just maps all points p ∈ M to 1 ∈ R – and we can define

6We will change our minds next lecture!
7That is does not map every point p ∈M to 0 ∈ R.
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the commutativity pointwise, using the fact that (R,+) is commutative. We therefore get a
commutative, unital ring. If we build on top of this, we get a module.

Definition (The C∞(M)-Module, ΓTM). The triple (ΓTM,⊕,�) is a C∞(M)-module
where

ΓTM := {χ :M→ TM| smooth section},

and

(χ⊕ χ̃)〈f〉 := χ〈f〉+ χ̃〈f〉,
(g � χ)〈f〉 = g · χ〈f〉,

where +/· are the addition/multiplication on C∞(M).

This is the first point where we have introduced a new notation for the action of a field.
Recall we have been denoting the action of a vector (at a point) on a C∞(M) function via
standard brackets, X(f). In order to distinguish this from the action of a smooth vector field
on f , we use angled brackets for the latter χ〈f〉.8 This might seem like a just a notational
problem, however it actually encapsulates an important point: a smooth vector field is a map
χ : M → TM, so how does it act on a scalar field? The answer is obviously through the
vectors that make up χ:

χ〈f〉
∣∣
p

:=
(
χ(p)

)
(f).

That is, we first evaluate χ(p), which gives us the X ∈ TpM, and then we let this act on the
scalar field, giving a real number. We do this for every point p ∈ M and so get a map that
associates to each point a real number, this is a scalar field. In other words we can think of
smooth vector fields as maps

χ : C∞(M)
∼−→ C∞(M).

It is because of this that we take the addition/multiplication on the right-hand side of the
expressions in the definition to be those defined on C∞(M).

Exercise

Show that the map χ : C∞(M)
∼−→ C∞(M) is R-linear. That is, for f, g ∈ C∞(M)

and λ ∈ R

χ〈f + g〉 = χ〈f〉+ χ〈g〉,
χ〈λ · f〉 = λ · χ〈f〉.

Also show that it obeys

χ〈f • g〉 = f • χ〈g〉+ χ〈f〉 • g,

where • : C∞(M) × C∞(M) → C∞(M) is the multiplication on the ring. This
property is known as the Leibniz rule.a

aNote for partial differential equations it is the familiar product rule.

8This particular choice of notation is used as it is the one I learned while at University.
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Now there is an important fact in set theory9 that every vector space has a basis. However,
this incredibly useful fact does not apply to modules. That is, in general, we cannot simply
take the subset

{χ1, ..., χd} ⊆ ΓTM

such that any other χ ∈ ΓTM can be expressed as a linear combination of this subset

χ = f i � χi.

Of course we can do this locally by simply decomposing our vector fields locally, but we cannot
do it globally.

Example 6.4.1 . Consider a ball with a smooth vector field over it. If we imagine this smooth
vector field as hairs sticking out of the ball, the idea of having a globally defined nowhere
vanishing smooth vector field, would be to ‘comb’ the hairs flat to the surface. That is, we
want all of the vectors to lie in the tangent spaces and not ‘stick straight out’.

However, in order to do this, we would have to remove some of the hairs: for example in
the diagram drawn below, the hair at the top and bottom would have to ‘vanish’ if we wanted
the ball to be smooth.

The fact that the vector field is not defined globally means that it can not possibly be a
basis element. Of course you could have another vector field that went ‘top-to-bottom’ on the
sphere that was defined at the North and South poles, but that would not allow you to define
any vector field at those points — how would you write a vector that pointed East from the
North pole?

This failure to define a global, nowhere vanishing, smooth vector field is related to the
fact that we can’t chart the space using only a single chart. That is, the minimal atlas for a
sphere contains two charts. For example, if we used polar spherical coordinates on the surface
to chart the sphere, the North and South poles will not be charted – whats the longitude
value at these points?

9Strictly speaking we need to us ZFC set theory, because we need the axiom of choice. For more information
see Dr. Schuller’s Lectures on the Geometric Anatomy of Theoretical Physics.
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We can repeat everything we did in order to define the tangent bundle but instead starting
from the cotangent space (T ∗M,+, ·). In doing this we get the cotangent bundle and smooth
covector fields. Finally we get the C∞(M)-module (ΓT ∗M,⊕,�) where

ΓT ∗M := {α :M→ T ∗M| smooth section}.

Example 6.4.2 . Recall we had the gradient at a point (df)p : TpM
∼−→ R. We now want to

extend this to be over the whole manifold. We therefore define

df : ΓTM ∼−→ C∞(M)

by10

df : χ := χ〈f〉.

The linearity here is actually C∞-linear.11 This is different to smooth vector fields, which are
only R-linear.

Exercise

Show that the map df : ΓTM ∼−→ C∞(M) is indeed C∞-linear. That is for all χ,Υ ∈
ΓTM and g ∈ C∞(M),

df : (χ⊕Υ) = (df : χ) + (df : Υ)

df : (g � χ) = g · (df : χ).

6.5 Tensor Fields

We have the smooth vector fields and the smooth covector fields. We can, therefore, now
construct smooth tensor fields.

Definition (Smooth Tensor Field). A smooth (r, s)-tensor field is a C∞(M) multilinear
map

T : ΓT ∗M× ...× ΓT ∗M︸ ︷︷ ︸
r-terms

×ΓTM× ...× ΓTM︸ ︷︷ ︸
s-terms

∼−→ C∞(M),

or in the other notation

T := ΓTM⊗ ...⊗ ΓTM︸ ︷︷ ︸
r-terms

×ΓT ∗M⊗ ...⊗ ΓT ∗M︸ ︷︷ ︸
s-terms

.

Remark 6.5.1 . Note in the second notation, the ⊗ now means a map to C∞(M) not just R,
as it did when we first introduced it. This is the downfall of this notation: people use the
same tensor product symbol for all kinds of different things that look similar.12

10We have used the notation given to me by my lecturer, namely we denote the action of df on X by a colon
and the action of a vector field on a scalar field via angled brackets.

11This is often called f -linear, for obvious reasons.
12For examples, see chapter 14 of my notes from Dr. Schuller’s Quantum Theory course.
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The two definitions above don’t seem to quite match, though. We have seen that α ∈
ΓT ∗M can map a X ∈ ΓTM to a C∞(M) function, but the opposite isn’t true — vector
fields map scalar fields to scalar fields — so how do does the tensor product definition work?
The answer is simply that we interpret it as the following example highlights.

Example 6.5.2 . Let T be a smooth (1, 1)-tensor field given by T = X ⊗ α. Its action as a
map is given by

T (β, Y ) = (X ⊗ α)(β, Y ) := (β : X)⊗ (α : Y ) = (β : X) • (α : Y ),

for β ∈ ΓT ∗M, Y ∈ ΓTM and where we have used the fact that the tensor product of two
scalar fields is just their multiplication, •.

Remark 6.5.3 . From this point on wards we shall simply say vector/covector/tensor field when
we mean a smooth field. This is just to lighten the amount of words.



7 | Connections

So far everything that we have introduced has been something we have to introduce by hand,
e.g. we provide a topology on our set. As we will see later in the course, Einstein’s equations
will actually give us a connection1 for our manifold, and so it is the physics that provides
this structure. Nevertheless, we shall continue on wards in a mathematical sense and define
connections this way.

Remark 7.0.1 . Really what we are interested in are so-called covariant derivatives, which are
technically slightly different to connections. However, this difference will not manifest here
and so we shall use both terms interchangeably.

Notation. We shall now undo the notation about labelling vector fields by Greek letters and
simply use X,Y, Z for vector fields. This is done because we will only consider vector fields
from this point on wards. If we do use a vector at some stage, it will be clear as we will use
the notation for the action of a vector (that is regular brackets) whereas we will continue to
use the angular bracket notation for vector fields.

So far we have seen that a vector field X can be used to provide a directional derivative
X〈f〉 of a function f ∈ C∞(M). To remind ourselves that we are dealing with directional
derivatives, we shall introduce a new notation

∇Xf := X〈f〉.

This seem like a massive notational overkill: we have three equivalent expressions,

∇Xf = X〈f〉 = df : X.

However, although the evaluations are equal, the three objects are actually different as maps.
That is

X : C∞(M)
∼−→ C∞(M),

df : ΓTM ∼−→ C∞(M).

What about ∇X , that as a map

∇X : C∞(M)
∼−→ C∞(M),

appears to be exactly the same as X. This is true, but it turns out that we can actually extend
the definition of ∇X to be a map from a (r, s)-tensor field to a (r, s)-tensor field, which X
cannot.

1It is actually a bit of a longer route, via so-called metrics, but we will see all of this.

47
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7.1 Directional Derivatives of Tensor Fields

We formulate a wish list of the properties which the ∇X acting on a tensor field should have.
This wish list might not give a unique form for ∇X and there may be many such objects that
satisfy our wish list conditions. It will be important for us to work out how to parameterise
these structures so that we can pick the best one for the circumstance we are considering.

Definition (Connection/Covariant Derivative). A (linear) connection ∇ on a smooth man-
ifold (M,O,A) is a map that takes a pair consisting of a vector (field) X and a (r, s)-tensor
field T and sends them to a (p, q)-tensor (field) ∇XT , satisfying:2 for all f ∈ C∞(M) and
(r, s)-tensor fields T, S

(i) Action on scalars; ∇Xf := X〈f〉,

(ii) +-linearity in the tensor fields; ∇X(T + S) = ∇XT +∇XS,

(iii) Leibniz; e.g. if T being a (1,1) tensor field, and ω ∈ ΓT ∗M, Y ∈ ΓTM,

∇X
(
T (ω, Y )

)
= (∇XT )(ω, Y ) + T

(
∇Xω, Y

)
+ T

(
ω,∇XY

)
.

This is extended naturally to higher order tensors, and

(iv) f -linearity in the vector field; ∇f ·X+Y T = f∇XT +∇Y T .

Remark 7.1.1 . The bracketed (field) in the above definition is because it is possible to only
feed ∇ a vector (not a vector field) and get out just a tensor defined at the same point as
the vector. It is important thought that we always feed in a tensor field. This is just the
extension of the fact that X(f) ∈ R whereas X〈f〉 ∈ C∞(M).

What the above remark actually highlights is what the covariant derivative does. Recall
that the derivative of something corresponds to ‘comparing how it changes as you go along’.
If we want to take some form of derivative of a tensor field, then, we obviously require it to
be defined at more then one point (so that we have two values to compare). This is why it
must be a field. The lower entry, though, simply tells us the direction that we wish to take
this derivative, and so we can consider just a single vector. So the covariant derivative asks
the question ‘how does T vary as you move along X?’ If we use just a vector, the result we
get tells us how T changes along X at that point, and so our result is just defined at that
point. If we use a vector field, though, we get how T varies along the vector field X and so
our result is a field.

We will see later a different derivative structure, the Lie derivative, that requires knowing
both T and X in a neighbourhood and so does not work for X being a vector.

2We shall assume it is a vector field for the notation used in these conditions. For just a vector just replace
the angular brackets with regular ones and replace f in condition (iv) with λ ∈ R.
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Exercise

Condition (iii) is also given in a different form. It is

∇X(S ⊗R) = (∇XS)⊗R+ S ⊗ (∇XR).

This makes the name Leibniza seem more reasonable. Prove that the expression above
can be derived from condition (iii).
Hint: Let T = W ⊗ y for W ∈ ΓTM and y ∈ Γ∗TM and then use the result

∇X(ω : W ) = (∇Xω) : W + ω : (∇XW ),

which you get from applying condition (iii) to a covector field.
aRecall Leibniz basically means an extension of the product rule.

Exercise

Show that conditions (ii)-(iv) are satisfied for a (0, 0)-tensor field, i.e. for a f ∈ C∞(M).
Hint: Use the fact that f ⊗ g = f • g, where • is the multiplication on the ring. Note,
if you have done the other exercises you are basically done!

Remark 7.1.2 . We have shown/argued that ∇X is the extension of the action of X, so its
natural to ask the question ‘what is ∇ itself?’ The answer is simply that it is the extension
of d. We see this straight away from ∇Xf = X〈f〉 = df : X.

Definition (Affine Manifold). We say that a manifold with connection, or affine mani-
fold, is the quadruple of structures (M,O,A,∇).

7.2 New Structure on (M,O,A) Required to Fix ∇

The question we want to answer is whether this is unique or whether different ∇s will give
the same result. In other words, how much freedom do we have in choosing ∇?3

Consider the action of a vector field X on another vector field Y . In order to do the
calculation, we also introduce a chart (U, x).

∇XY = ∇Xi ∂

∂xi

(
Y j ∂

∂xj

)
= Xi∇ ∂

∂xi

(
Y j ∂

∂xj

)
= Xi

(
∇ ∂

∂xi
Y j
) ∂

∂xj
+XiY j

(
∇ ∂

∂xi

∂

∂xj

)
= Xi∂Y

j

∂xi
∂

∂xj
+XiY j

(
∇ ∂

∂xi

∂

∂xj

)
= X〈Y j〉 ∂

∂xj
+XiY j

(
∇ ∂

∂xi

∂

∂xj

)
,

3There is a slightly more generic, nice discussion of this given in Wald’s book, Section 3.1 (pages 32-34).
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where we have used the axioms for the connection along the way. Now, what do we do with
the last term? Well its the covariant derivative of a vector field, and so we know that it must
be a vector field. We can then expand this in the chart induced basis and give it coefficients,
which we call Γm. These coefficients will actually also need a covariant i and j index in order
for the summation convention to not be broken. So we have(

∇ ∂

∂xi

∂

∂xj

)
= Γm(x)ji

∂

∂xm
.

These coefficients are called the connection coefficient functions of ∇ w.r.t. the chart
(U, x).4 Note we wrote the j index before the i index above, this is important to note as we
don’t, as yet, have any symmetry condition Γm(x)ji = Γm(x)ij .

We can write these via the following definition.

Definition (Connection Coefficient Functions). Let (M,O,A,∇) be a affine manifold and
let (U, x) ∈ A. The connection coefficient functions, henceforth just ‘the Γs’, are the
(dimM)3 many functions

Γi(x)jk : U → R

p 7→
[
dxi :

(
∇ ∂

∂xk

∂

∂xj

)]
p

.

Remark 7.2.1 . We can see5 how our two expressions for the Γs are equivalent by imagining
‘inverting’ the action of the dxi so that it becomes a ∂

∂xi
on the left-hand side.

Now, plugging the Γs into the expression for ∇XY and relabelling the indices, we can
express the right-hand side as (...)i ∂

∂xi
, and so extract the components of the derivative. We

get
(∇XY )i = X〈Y i〉+XjY kΓi(x)kj .

So the answer to our question of how much freedom is left is the Γs; that is we can tell you
exactly which ∇ we are using by telling you the Γs. Clearly this only holds on the chart
domain U ⊆ M as that’s where the Γs are defined. Now you might say ‘hold up we only
know that this will give us the covariant derivative of a vector field, what about the covariant
derivative of different tensors? We will surely need more and more terms to find them!’
Luckily the answer is that we don’t and it suffices to just know that Γs. In order to see this,
consider the following.

If we wanted to work out the action on a covector basis element dxi, we could do a similar
thing to above and expand the result in the basis. That is

∇ ∂

∂xi
dxj = Θj

(x)kidx
k,

where the Θs are defined by this expression. We want to show that we can actually express
4Note the subscript (x), there to remind us that it is defined with respect to the chart.
5Granted rather hand wavingly as presented here.
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these Θs in terms of the Γs. In order to do that, consider the following:

∇ ∂

∂xi

(
dxj :

∂

∂xk

)
=
(
∇ ∂

∂xi
dxj
)

:
∂

∂xk
+ dxj :

(
∇ ∂

∂xi

∂

∂xk

)
∇ ∂

∂xi
δjk = Θj

(x)`idx
` :

∂

∂xk
+ dxj :

(
Γ`(x)ki

∂

∂x`

)
0 = Θj

(x)`iδ
`
k + Γ`(x)kiδ

j
`

Θj
(x)ki = −Γj(x)ki,

and so by giving the Γs we can also tell you the action of the covariant derivative on a covector
field.

We have the following mnemonic: ‘when it acts on a vector field, you get a plus sign, when
it acts on a covector you have a minus sign.’ Summarising, we have

(∇XY )i = X〈Y i〉+ Γi(x)jkX
kY j ,

(∇Xω)i = X〈ωi〉 − Γj(x)ikX
kωj .

Note the placement of all the indices, it is very important to know the method of which
index corresponds to which term (i.e. the X or Y or ω). An easy way to do this is to think
summation convention and then to know that on the second term the index on whatever
you’re differentiating changes. Then you just remember that the second lower index on the
Γs always corresponds to the index of the X.

So what about higher order tensors? The answer is obviously just to use the Leibniz rule.
For example, for a (1, 2)-tensor field T we have

(∇XT )ijk = X〈T ijk〉+ Γi(x)m`X
`Tmjk − Γm(x)j`X

`T imk − Γm(x)k`X
`Tmjm.

Each term is the contribution from one of the indices on the left-hand side. You consider that
index formula and you leave the remaining two untouched.

Exercise

Show that the above result is indeed obtained by the Leibniz formula.
Hint: Let T = Y ⊗ ω ⊗ γ for Y ∈ ΓTM and ω, γ ∈ ΓT ∗M.

Remark 7.2.2 . We can use the Γs to define what we mean by a Euclidean space. LetM = R3

be equipped with the standard topology Ost and a smooth atlas A. We define the Euclidean
space to be this smooth manifold equipped with a connection such that is is possible to find
a chart (U, x) ∈ A such that

Γi(x)jk = 0,

for all i, j, k ∈ {1, ...,dimM}. Note we say ‘it is possible to find a chart’ such that this
happens. As we will see, just because the Γs vanish in one chart does not mean they will
vanish in another (that is, they are not tensors!). We will also extend this notion of a
Euclidean space to define the spacetime extension known as Minkowski spacetime, which is
a intrinsically flat spacetime. We get a hint here about what covariant derivatives do: they
detect curvature.
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Notation. (i) From now on, unless the context requires (e.g. considering change of charts),
we shall drop the (x) subscript on the Γs in order to lighten notation.

(ii) Again unless the context requires, we shall also use the notation

∇i := ∇ ∂

∂xi
.

Definition (Divergence of Vector Field). Let X be a vector field on a smooth affine manifold
(M,O,A,∇). The divergence of X is the function

divX := (∇iX)i.

Claim 7.2.3 . The above definition is chart independent.

7.3 Change of Γs Under Change of Chart

So far we have defined the Γs on U ⊆ M, we obviously want to extend this to be a global
definition on all ofM. We do this by considering overlapping charts and require compatibility.

Assume we have a affine manifold (M,O,A,∇) and consider two charts (U, x) and (V, y)
with U ∩ V 6= ∅. We want to relate the Γs in these charts.

Γi(y)jk := dyi :

(
∇ ∂

∂yj

∂

∂yk

)
=
∂yi

∂xq
dxq :

(
∇ ∂xp

∂yj
∂
∂xp

∂xs

∂yk
∂

∂xs

)
=
∂yi

∂xq
dxq :

(
∂xp

∂yj

[
∂

∂xp

〈
∂xs

∂yk

〉
∂

∂xs
+
∂xs

∂yk

(
∇ ∂

∂xp

∂

∂xs

)])
=
∂yi

∂xq
dxq :

(
∂xp

∂yj

[
∂

∂xp

〈
∂xs

∂yk

〉
∂

∂xs
+
∂xs

∂yk
Γm(x)sp

∂

∂xm

])
=
∂yi

∂xq
∂xp

∂yj

(
∂

∂xp

〈
∂xs

∂yk

〉
δqs +

∂xs

∂yk
Γm(x)spδ

q
m

)
=
∂yi

∂xq
∂xp

∂yj
∂

∂xp

〈
∂xq

∂yk

〉
+
∂yi

∂xq
∂xp

∂yj
∂xs

∂yk
Γq(x)sp

=
∂yi

∂xq
∂

∂yj

〈
∂xq

∂yk

〉
+
∂yi

∂xq
∂xp

∂yj
∂xs

∂yk
Γq(x)sp

=
∂yi

∂xq
∂2xq

∂yj∂yk
+
∂yi

∂xq
∂xp

∂yj
∂xs

∂yk
Γq(x)sp,

where to get to the penultimate line we have used the change of chart rule, that is6

∂xp

∂yj
∂

∂xp
=

∂

∂yj
,

6This is an important step as we need both the derivatives to be w.r.t. the same chart label (y) in order
for us to be able to use Schwartz’s rule for switching the differentiation order.
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and where we have introduced the notation7

∂2xq

∂yj∂yk
:=

∂

∂yj

〈
∂xq

∂yk

〉
.

Note that if the expression was simply

Γi(y)jk =
∂yi

∂xq
∂xp

∂yj
∂xs

∂yk
Γq(x)sp,

we would say ‘ah this is a (1, 2)-tensor component transformation!’ This is not the only term
though and so we see that the Γs are not tensors! This second term actually has another,
very important, implication: because there is no Γ(x) term present in it, just because the Γ(x)s
vanish, it does not mean that they vanish for another chart for the same manifold. That is,
by simply a nonlinear transformation we can introduce Γs into our system. This is what the
comment in Remark 7.2.2 was on about, we can only talk about the existence of a chart such
that the Γs vanish as they will not vanish on all charts.

Remark 7.3.1 . Note for linear transformations (also known as affine maps) the Γs behave
like the components of a (1, 2)-tensor as the second derivative will vanish. This is one of
the reasons that people choose to restrict themselves to linear transformation in position in
special relativity.

The condition above is our compatibility condition for the overlapping regions in order to
define the Γs globally. Since this is our chart compatibility condition, we can only generally
make the Γs vanish locally, i.e. within one chart.8

Remark 7.3.2 . Technically speaking it is the symmetric part (which we denote with regular
parentheses around the symmetric indices) of the Γs that are not the components of a tensor.
The antisymmetric part Γi(y)[jk], which means

Γi(y)jk = −Γi(y)kj ,

are the components of a (1, 2)-tensor. We see this simply from the fact that

∂2xq

∂yj∂yk
=

∂2xq

∂yk∂yj
.

So if you have a non-vanishing antisymmetric part to your Γs you can not use a chart trans-
formation to remove it. It turns out that the antisymmetric part of the Γs vanish when we
have a so-called torsion free9 system. So if we restricted ourselves to torsion free charts, we
could then use a chart transformation to obtain locally vanishing Γs.

7Obviously this notation is just that for partial derivatives, but recall that our fractions ∂f
∂xi

don’t mean
partial derivative, it means the expression we defined before.

8Some manifolds, like Minkowski spacetime, can be covered with a single chart and so we can obtain globally
vanishing Γs.

9We shall discuss this briefly later.
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7.4 Normal Coordinates

Let (M,O,A,∇) be a arbitrary affine manifold and let p ∈ M. Then one can construct a
chart (U, x) ∈ A with p ∈ U such that10

Γi(x)(jk)(p) = 0.

This says that we can make the Γs vanish at the point p ∈ M, not that we can necessarily
make them vanish is some neighbourhood of p.11

Proof. Let (V, y) ∈ A be any chart with p ∈ V . Thus, in general, the Γi(y)(jk) 6= 0. Then
consider a new chart (U, x) to which one transits by virtue of

(x ◦ y−1)(α1, ..., αd) := αi − 1

2
αjαkΓi(y)(jk)(p).

Then (
∂xi

∂yj

)
p

:= ∂j(x
i ◦ y−1)

∣∣
(α1,...,αp)

= δij − αmΓi(y)(jm)(p)

=⇒
(

∂2xi

∂yk∂yj

)
p

= −Γi(y)(jk)(p).

Now we can choose, w.l.o.g., the chart (V, y) such that y(p) = (0, ..., 0), then we have

Γi(x)jk(p) = Γi(y)jk(p)− Γi(y)(jk)(p) = Γi(y)[jk](p),

and so we only have a antisymmetric contribution, therefore the symmetric part vanishes.

Terminology . The chart (U, x) is called a normal coordinate chart of ∇ at p ∈M.

10Again, the parentheses denote the symmetric part: Γi(x)(jk) = 1
2
(Γi(x)jk − Γi(x)kj).

11This means that we can not set derivative of the Γs to zero generally.



8 | Parallel Transport & Curvature

Consider the following experiment: stand on a surface and stick your arm out directly in-front
of you. Make a mental note at where your arm is pointing. Now walk around the room, but
do it in a fashion such that you are not allowed to rotate your body or move the position
of your arm relative to your chest. So if you want to move to your left you continue to
face forward with your arm pointing forward and simply step left. Walk around the room in
this fashion for however long you like and then finally return to your initial position. Now
compare where your arm is pointing to where it was pointing previously. Provided you did
follow the instructions, if you are on a flat surface your arm will be pointing in exactly the
same direction as it was at the start. If you were on a curved surface, it is possible that your
arm is now pointing in a different direction.

To see why the latter is true, let the surface be the surface of the earth. Imagine you start
at the North Pole. You then walk1 directly forwards until you reach the equator. Now side
step to your right for a quarter turn around the equator. Finally walk backwards until you
reach the North Pole again. Your arm will now be pointing at a 90 degree angle (to the right)
of how it was initially.

Mathematically, what we are talking about is the directional derivative of a vector field.
On the plane the vector field does not change no matter what path you take, and so the
instructions of how to walk about are simply

∇vγX = 0

where γ is the path you take and X is the vector field made by your arms.
The instructions on the sphere are the same, but the result is different. This gives us

our first hint that the covariant derivative somehow encodes the (intrinsic) curvature of the
1You can walk on water for this experiment and there are no buildings or mountains etc in your way.
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surface. From here we can convince ourselves that the connection is what gives our manifold
‘shape’. That is both the sphere and the potato have (S2,O,A) as topological manifolds but
they have different curvature and so have different connections, ∇sphere and ∇potato. The aim
of this lecture is to make this more precise.

8.1 Parallelity of Vector Fields

In this lecture we shall assume that a connection has already been chosen for our manifold
and so we are dealing with a smooth affine manifold (M,O,A,∇).

Definition (Parallely Transported). A vector field X onM is said to be parallely trans-
ported along a smooth curve γ : R→M if

∇vγX = 0.

Remark 8.1.1 . Note at this point it is important that we don’t need the lower slot in the
covariant derivative to be a vector field over all of M, as vγ is only a vector field over the
image of the curve.

We also have a slightly weaker condition.

Definition (Parallel). A vector field X inM is said to be parallel along a curve γ : R→M
if

∇vγX = µ ·X,
for µ : R→ R a smooth function. Written pointwise, that is(

∇vγ,γ(λ)X
)
γ(λ)

= µ(λ) ·Xγ(λ).

Note any parallely transported vector field is parallel – simply choose µ(λ) = 0 for all λ.

Example 8.1.2 . Let our smooth affine manifold be the Euclidean plane (R2,O,A,∇E). The
left drawing below is a parallely transported vector field, the middle drawing is a parallel
vector field and the right drawing is not even parallel.

In the middle drawing it is important that the vector field vanishes in-between the points
when it points ‘up’ vs. ‘down’, as µ : R→ R is smooth.

Remark 8.1.3 . It is tempting to look at the example above and think of the length of the vector
field being constant for a parallely transported vector field whereas the length is allowed to
change for a parallel vector field. Although this is intuitively very good, we as of yet have
no notion of how to measure a length and so it doesn’t make sense for us to talk about the
length staying the same/changing. It is just the connection that gives us the above drawings.
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8.2 Autoparallelly Transported Curves

As the name suggests, an autoparallely transported curve is one that is parallely transported
along itself. What we mean by this is to take the starting point of the curve and look at its
tangent vector and then tell the curve to follow that direction. You then repeat this for every
point along the curve. To use our person-with-their-arm-out analogy, it would be the idea of
‘follow where your arm is pointing’.

This gives us a great intuitive insight: we are travelling along the straightest curve between
two points. Note we say straightest and not shortest, as we still don’t have a notion of length
yet. Note also that the straightest line might not actually look straight when ‘viewed from
above’. That is, if we embed the manifold into a higher dimensional one and then look
just at the curve, it might look curved. For example, on the sphere a straight line traces
out a portion of a circle around the sphere. This does not look straight in the (Euclidean)
embedding, however on the surface it is the straightest line.

Let’s write this more formally.

Definition (Autoparallely Transported). A smooth curve γ : R→M is called autoparallely
transported if

∇vγvγ = 0.

Definition. A smooth curve γ : R→M is called an autoparallel if

∇vγvγ = µ · vγ .

Example 8.2.1 . Again consider the Euclidean plane (R2,O,A,∇E). If we represent equal
parameter changes by dashes in our drawings we have the following drawings, where the left
is a autoparallely transported curve and the right is just a autoparallel.

Remark 8.2.2 . The autoparallely transported curve in the above example is what we might
think of as a "uniform straight curve", and the autoparallel just just a straight curve. This
gives us our next nice insight. Recall that Newton’s first law talks about a moving body
that experiences no forces moves along a uniform straight path. We see, then, that what
Newton’s first law says is that these bodies are autoparallely transported. So we could do
such an experiment and use the result to work backwards and determine what the connection
is. That is, Newton’s first axiom is a measurement prescription for your geometry.

Terminology . People also refer to autoparallely transported vector fields as simply autoparal-
lels. As we have seen this actually means a curve where we only require the right-hand side
be proportional point-by-point to vγ . Despite this, in these lectures we shall also adopt this
terminology and (unless the case specifically requires it) simply refer to autoparallels, when
we really mean autoparallely transported.
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8.3 Autoparallel Equation

Consider an autoparallel γ : R→M and consider the portion of the curve that lies in U ⊆M
where (U, x) ∈ A. We would like to express the condition ∇vγvγ = 0 in terms of chart
representatives of the objects. The left-hand side is a vector field (along γ) and so we can
express vγ in the chart as

vγ,γ(λ) = γ̇m(x)(λ) ·
(

∂

∂xm

)
γ(λ)

.

So we have (suppressing (x) for notational convenience)

∇vγvγ = ∇
γ̇m·
(

∂
∂xm

)[γ̇n(x) ·
(

∂

∂xn

)]
= γ̇m

∂γ̇n

∂xm
∂

∂xn
+ γ̇mγ̇nΓqnm

∂

∂xq
.

Now, all the indices are summed over and so we are free to relabel n → q in the first term,
and using γ̈n := γ̇m ∂γ̇n

∂xm gives us

∇vγvγ =
(
γ̈q + γ̇mγ̇nΓqnm

) ∂

∂xq
.

Now we know the basis elements are linearly independent and so the autoparallely transported
condition must be be true for each component and so we have (reinserting all the (x)s and
the (λ)s)

γ̈i(x)(λ) + Γi(x)jk

∣∣
γ(λ)

γ̇k(x)(λ)γ̇j(x)(λ) = 0,

which is the chart expression that the curve γ be autoparallely transported. This is a really
important equation for physics, as we shall begin to see next lecture.

Remark 8.3.1 . We know that the complete autoparallel equation transforms like a vector (as
it comes from ∇vγvγ , which is a vector). However we have already seen that the Γs are
not tensors and so do not transform nicely. We see, then, the γ̈ must also not be a tensor
itself, but must transform in such a way as to cancel the bad parts from the Γs. This is an
important fact to note, as one is often tempted to call γ̈ the acceleration along γ, but it is not
(as acceleration is a vector). In fact the acceleration is the complete autoparallel equation.
This is actually a very nice result as it tells us that the condition for a straight line is that
the acceleration along the line vanishes! It is only in a flat space, in a chart where we take
the Γs to all vanish that we recover a = γ̈. For emphasis, we also write this in the following
definition. We shall also return to acceleration at the end of this lecture.

Definition (Acceleration). Let γ : R → M be a smooth curve on an affine manifold
(M,O,A,∇), and let vγ be the velocity field along γ. Then the acceleration field along γ
is given by

aγ := ∇vγvγ .

Example 8.3.2 . Consider the Euclidean plane (R2,O,A,∇E) and the chart (U, x) = (R2, 1R2)
so that Γi(x)jk = 0 for all i, j, k = 1, 2. Then our autoparallel equation simply reads

γ̈i(x)(λ) = 0 =⇒ γi(x)(λ) = aiλ+ bi,
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where ai, bi ∈ R. This is just what we normally think of as the equation for a straight line.
Note, however, this is only valid in this chart. If we transformed to polar coordinates the Γs
wouldn’t vanish and so the expression for γ would be different.

Example 8.3.3 . Now consider the so-called round sphere2 (S2,O,A,∇round) and the chart
(U, x) with x(p) = (θ, ϕ), where θ ∈ (0, π) and ϕ ∈ (0, 2π), which are the usual spherical
coordinates.3

We define ∇round to be such that

Γ1
(x)22

∣∣
x−1(θ,ϕ)

= − sin θ cos θ, Γ2
(x)12

∣∣
x−1(θ,ϕ)

= Γ2
(x)21

∣∣
x−1(θ,ϕ)

= cot θ,

and all other Γs vanishing. If we now introduce the (sloppy) notation

x1(p) = θ(p), and x2(p) = ϕ(p),

then the autoparallel equation tells us

θ̈ + Γ1
(x)22ϕ̇ϕ̇ = θ̈ − sin(θ) cos(θ)ϕ̇ϕ̇ = 0

ϕ̈+ 2Γ2
(x)12ϕ̇θ̇ = ϕ̈+ 2 cot(θ)ϕ̇θ̇ = 0.

Now look at solutions to these equations. One solution is

θ(λ) =
π

2
and ϕ(λ) = ω · λ+ ϕ0,

for ω, ϕ0 ∈ R, which is checked by direct substitution. These equations correspond to just
going around the equator of the sphere. at a constant speed.

You can show that any curve that goes right round the sphere (e.g. North pole to South
pole and back) will satisfy these equations. So we see that the straightest curves (that is the
curves that satisfy the autoparallel equation) on the round sphere are just curves that go all
the way around. This is why this choice of Γs corresponds to the round sphere; we think of a
round sphere as one whose straight lines behave like this.

Remark 8.3.4 . Technically the last example is slightly wrong. This is because the chart do-
main U does not cover all of the round sphere but must necessarily miss off two antipodal
points (e.g. North and South pole) and a straight line connecting them (e.g. a line of longi-
tude). However, the results of the exercise are still clear.

Exercise

Show that the statement in the above remark is true: that U must miss out two
antipodal points and a straight line connecting them.

2That is just perfect sphere, but here ‘round’ tells us to use the connection that gives this and not, say,
the one for a potato.

3I.e. θ is the angle from the z=axis and ϕ the angle from the x-axis. Note the x, y, z-axes are actually a
coordinate system in themselves.
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8.4 Torsion

Question: Can one use ∇ to define tensors on (M,O,A,∇)?
Answer: Yes.

Definition (Torsion). The torsion of a connection ∇ is the (1, 2)-tensor field

T (ω,X, Y ) := ω :
(
∇XY −∇YX − [X,Y ]

)
,

where [·, ·] : ΓTM× ΓTM→ ΓTM is the commutator4 on ΓTM given by

[X,Y ]〈f〉 := X
〈
Y 〈f〉

〉
− Y

〈
X〈f〉

〉
.

Exercise

Prove that T is C∞ linear in each entry, which we require if T is to be a tensor.

Definition (Torsion Free Connection). A affine manifold (M,O,A,∇) is called torsion free
if the torsion tensor T vanishes everywhere. One can also say that the connection is torsion
free. This is often just written as

∇XY −∇YX = [X,Y ]

for all X,Y ∈ ΓTM.

Exercise

Show that a torsion free manifold is one such that the Γs are purely symmetric. That
is show Γi[ab] := 1

2(Γiab − Γiba) = 0.
Hint: Calculate T iab = T

(
dxi, ∂

∂xa ,
∂
∂xb

)
.

Remark 8.4.1 . The above exercise is exactly the result we discussed when we first introduced
the Γs are talked about only being able to remove the symmetric part by chart transformation.

People have tried to attach physical significance to torsion (e.g. Scrhödinger’s "Spacetime
Structure") but in the standard theory of general relativity we do not and so from this point
on-wards in the lectures5 we shall only use torsion free connections.

8.5 Curvature

There is another, more important, tensor that we can define using our connection.

Definition (Riemann Curvature). The Riemann curvature of a connection ∇ is the (1, 3)-
tensor field

Riem(ω,Z,X, Y ) := ω :
(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
.

4In fact turn this is a Lie bracket by restricting to R-linearity instead of C∞-linearity, and define the Lie
algebra of vector fields. We will do this in Lecture 11.

5Not in the tutorials, though.



LECTURE 8. PARALLEL TRANSPORT & CURVATURE 61

Note the order of the entries, its (Z,X, Y ) not (X,Y, Z), this is just a convention that
makes the right-hand side look neater.

Definition (Ricci Curvature). Let Riem be the Riemann curvature tensor of a connection
∇. We define the Ricci curvature tensor as the (0, 2)-tensor field

Ric(X,Y ) := Riem(ea, Y,X,Za),

where ea : Zb = δab .

In terms of components6 the Ricci curvature tensor is given by

Ricab := Riemc
acb.

Notation. We have define the Riemann curvature tensor with the symbol Riem and the Ricci
curvature with the symbol Ric. In the literature one often sees just R used for either. This
is done because one is often looking at the components and so you can easily work out which
you are dealing with based on that. However, as we shall see, there is a third object called
the Ricci scalar (which we can’t define until we have defined metrics) which we denote R.
Seeing as it is a scalar, it has no indices and so just appears as R. It is in order to avoid any
potential confusion that we have decided to use Riem and Ric for these notes.

Exercise

Show that Riem is C∞ linear in all its entries.

Exercise

Show that Riem is antisymmetric in its final two entries. That is

Riem(ω,Z,X, Y ) = −Riem(ω,Z, Y,X).

Use this second result to show that Riem has d3(d− 1)/2 independent components.
Hint: The second two parts are done in the tutorial video.

Notation. When there is no confusion about which basis7 is being used we shall used the short
hand notation

∇a := ∇ ∂
∂xa

.

In light of this, we shall also use the short hand

∂a :=
∂

∂xa
.

The latter is subtle as we need to remember that the right-hand side is defined in terms of
partial derivatives which are written ∂i.

6See the tutorial for the components of Riem.
7That is when we’re only dealing with one basis. If there is more then one (e.g. a change of basis calculation)

it is vital to keep track of which indices are for which basis.
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An algebraic relevance of Riem is the following. We have the result

∇X∇Y Z −∇Y∇XZ = Riem(·, Z,X, Y ) +∇[X,Y ]Z.

If we consider a chart (U, x) and let X = ∂a and Y = ∂b, this becomes

(∇a∇bZ)m − (∇b∇aZ)m = Riemm
nabZ

n,

where we have used [∂a, ∂b] = 0.

Claim 8.5.1 . The Lie bracket [X,Y ] answers the question of "how well the vector fields X and
Y can be coordinate vector fields". That is it tells us that if we lay X and Y on top of each
other, do they form a grid? Pictorially, it asks "does the black shape close?" If [X,Y ] = 0
then the answer is yes.

X

Y
[X, Y ] = 0

From this claim we can get a nice geometrical idea for the Riemann curvature. The left-
hand side (∇a∇bZ −∇b∇aZ) takes the vector Z from the bottom corner of the black shape
and around in the direction of the arrows drawn (note the minus sign means we go down the
X and left on the Y ). If Riem vanishes, the result is that the transported Z and the initial Z
coincide, and therefore we haven’t travelled through curvature (recall that parallel transport
on a curved surface is path dependent). Whereas if Riem does not vanish then the transported
Z is not the same as the initial Z and so we must have gone through curvature. Therefore the
Riemann curvature tensor encodes information about the curvature of the manifold (hence
the name!).

Remark 8.5.2 . Note we have used a chart in order to obtain the above result and so we might
be worried that Riem vanishes in one chart but not in another (e.g. Cartesian to polar). The
answer is obviously that this can’t happen because it is a tensor and so if it vanishes in one
chart it must vanish in all charts.

Lemma 8.5.3. The Riemann tensor satisfies the differential Bianchi identity,

(∇ARiem)(ω,Z,B,C) + (∇BRiem)(ω,Z,C,A) + (∇CRiem)(ω,Z,A,B) = 0,

where ∇ is torsion-free. In component form this reads

∇cRwzab +∇aRwzbc +∇bRwzca = 0
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Exercise

Prove that the Bianchi identity holds.
Hint (from tutorial): Start by rewriting the first term only by repeated use of the Leibniz
rule and one-time employment of the definition of the Riemann tensor. From this
result, generate the second and third terms by mere cyclic substitution of the appropriate
vectors. The rest is systematic and disciplined elimination of terms.



9 | Newtonian Spacetime Is Curved

The title to this lecture sounds shocking: isn’t Newtonian spacetime flat? The answer is
‘yes in the standard formulation it is.’ What this lecture aims to do is to express Newtonian
spacetime in a new way such that gravity manifests itself as curvature. It is important to
note that this is not general relativity, it is simply Newtonian spacetime.

Our argument is going to revolve around showing that gravity must not be considered as
a force but instead it must be considered to be encoded in a curvature of the spacetime.

Recall Newton’s first two laws:

(I) A body on which no force acts moves uniformly along a straight line.

(II) Deviation of a body’s motion from such straight motion is effected by a force, reduced
by a factor of the body’s reciprocal mass.

The first thing we note is that, if read as a prescription of what a body does, the first axiom
is merely a specific case of the second one (i.e. just let the force vanish in Newton II). We
therefore need to read the first axiom in a different manner: you assume that a particle is not
experiencing any forces and you use these particles to experimentally check what a straight
line is. The first axiom is a measurement prescription for geometry.

The second important point we need to note is that, if we view gravity as a force, the
first axiom is only useful if we consider a universe in which a single particle lives. That is,
gravity universally acts on all massive objects and so if we have two massive particles in our
universe (which our Universe clearly does1) they must both experience a force, and so Newton
(I) becomes useless... Unless we stop thinking of gravity as a force.

Remark 9.0.1 . You might think that we’re being a bit pedantic here and just say ‘oh ok, but
we can just use Newton II and go on our merry way!’ The problem with that is that Newton
II talks about the deviation from a straight line, and without Newton I we don’t know what
a straight line is.2

9.1 Laplace’s Question

Laplace asked the following question:

"Can gravity be encoded in the curvature of space, such that its effects show if particles
under the influence of (no other) force are postulated to move along straight lines in this

curved space?"
1Otherwise there is no one else to read these notes, and I have wasted some time.
2Checkmate.

64



LECTURE 9. NEWTONIAN SPACETIME IS CURVED 65

The answer to this question is, unfortunetly for Laplace, a resounding "no".

Proof. Let’s consider the ‘gravity as a force’ point of view. We have

mẍα(t) = Fα
(
x(t)

)
,

for α = 1, 2, 3, and Poisson’s equation for Fα = mfα

−∂αfα = 4πGρ.

Substituting in Fα = mfα we see that we can cancel out the ms to get a relationship between
the acceleration and the force that is independent of mass. This is an experimentally verified
fact (see video at 16:50-20:00 if you aren’t familiar with such an experiment), and is given the
name ‘weak equivalence principle’.

So Laplace’s question becomes is

ẍα(t)− fα
(
x(t)

)
= 0

of the form of a autoparallel equation. That is is it of the form

ẍα(t) + ẋβ(t)ẋγ(t)Γαβγ
(
x(t)

)
= 0?

The answer is no, because fα is only a function of x(t) and no its derivatives, but the second
term in the autoparallel equation contains derivatives. Along with this, the Γs are only
dependent on x(t) and so can’t cancel out this velocity dependence and so it is just not
possible to equate the two expressions.

So we cannot find Γs such that Newton’s equation takes the form of an autoparallel, and
since the Γs are what determine the connection, which we have seen is related to the curvature,
we cannot encode the effect of gravity as a curvature in this way.

9.2 The Full Wisdom of Newton I

We have just shown that the answer to Laplace’s question was no, so why did we bother to
talk about it? The answer is that it highlights its flaw and then allows us to see how to change
it in order to get something correct. The problem was that Laplace didn’t read Newton I
careful enough. Newton I does not just talk about motion but about uniform motion.

Uniform motion involves understanding how something moves in time as well as space.
Uniform motion is plotted as a straight line on a space-time graph, whereas straight, but not
uniform, motion is given by a curve.

t t

x x
Straight, uniform Motion Straight, non-uniform Motion

https://www.youtube.com/watch?v=IBlCu1zgD4Y&list=PLFeEvEPtX_0S6vxxiiNPrJbLu9aK1UVC_&index=9
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In a spacetime picture, then, straight, uniform motion in space is simply just straight
motion. So our idea is to alter Laplace’s question to be "... curvature of spacetime, ...", and
then repeat the process. Again note that here we are talking about Newtonian spacetime,
this is not general relativity!

For motion in space we had the particles motion given by x : R→ R3. We need to convert
this into the particles worldline, which we get from the map X : R→ R4 given by

X(t) =
(
t, x1(t), x2(t), x3(t)

)
:=
(
X0(t), X1(t), X2(t), X3(t)

)
.

We haven’t done anything new, we have simply just turned the parameterisation of the curve
(the ‘time’) into a coordinate and considered the spacetime picture.

Claim 9.2.1 . By doing the above, the answer to the modified Laplace’s question is "yes".

Proof. Assume that (note it is the little x here)

ẍα(t) = fα
(
x(t)

)
for α = 1, 2, 3, still holds. We now have the trivial result

Ẋ0(t) = 1, =⇒ Ẍ0(t) = 0.

We can rewrite the Newton equation in terms of the big X as3

Ẍα(t) = fα
(
X(t)

)
,

for α = 1, 2, 3. Now, we can multiply by Ẋ0(t) because its equal to 1, and so we have

Ẍα(t)− fα
(
X(t)

)
Ẋ0(t)Ẋ0(t) = 0.

Now combing this with the Ẍ0(t) = 0 equation, we see that we have a autoparallel equation

Ẍa + ΓabcẊ
bẊc = 0

where a, b, c = 0, 1, 2, 3. This is seen by choosing all of the Γs to vanish apart from

Γα00 = −fα ∀α = 1, 2, 3.

Now this could just be a coordinate-choice artefact, and so could be transformed away. In
terns out that this is not the case, and you can show it by calculating the Riemann curvature
tensor components. The only non-vanishing ones are

Riemα
0β0 = −∂β〈fα〉.

As this is a tensor, if it is non-vanishing in one chart it must be non-vanishing in all charts.
3Note technically fα(X(t)) is a new function, but we just define it to be such that it ignores the first entry.
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Remark 9.2.2 . Given the Riemann tensor at the end of the proof above, we can actually
workout the Ricci tensor, given by setting α = β,

Ric00 = −∂a〈f〉,

which, using the Poisson equation gives

Ric00 = 4πGρ.

This is actually one of the so-called Einstein equations

Ric00 = 8πGT00,

where T00 = ρ/2. T is known as the energy-momentum tensor, we shall meet this in much
more detail later on.

Remark 9.2.3 . Note the fact that the only non-vanishing Γs have the lower indices both
‘time’ (i.e. they are 0), it tells us that the curvature is taking place in spacetime, not just
in space. That is the Riemann tensor vanishes for all spatial indices Riemα

βγδ = 0 for all
α, β, γ, δ = 1, 2, 3.

9.2.1 Tidal Forces

The result above about not being able to transform away the curvature result is known as
tidal forces. The basic idea is that you can only transform away gravitational fields locally.
In other words, the only way you can transform away a gravitational field globally is if it is
uniform.

To see why this is the case, imagine being inside a box in space with two balls. now
imagine the box is in a gravitational field, and so is in free fall towards some massive object.
We shall ignore the gravitational fields generated by our body and by the balls themselves. If
the gravitational field is uniform across the box, everything experiences the same pull and so
falls exactly the same. That is, if we put the balls out at our sides, they would appear to just
float there, and if there was no windows on our box to see things moving past us, we actually
wouldn’t even know we were in a gravitational field. Obviously someone sat stationary (w.r.t
the massive object) outside the box would see the balls moving down and so would say they
are in a gravitational field.

What is going on here is that we have transformed ourselves to a frame of reference (which
for this remark is just a chart) which falls with the balls and so we have ‘removed’ the effects
of gravity via such a change of chart.

Gravitational effect transformed away
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Now imagine we do the same thing, but the gravitational field is not uniform, but comes
radially from some spherical object. Again everything still falls at the same rate, but now
the ball to our left will be pulled slightly to the right and the ball to our right will be pulled
slightly left. To us inside the box, then, the balls slowly move towards each other. This is
not an effect that we can remove by going to another frame of reference, and so represents
something physical. This is ‘real’ gravity.

Tidal force

The inability to remove this effect by a change of chart is what we refer to as a tidal force.4

From this we see that when we feel gravity pulling us, it’s actually the inhomogeneous nature
of the gravity we feel; it pulls our feet harder then it pulls our head and it pushes are arms
towards each other.

9.3 The Foundation of the Geometric Formulation of Newton’s Axioms

So far we have managed to change our thinking of gravity as a force into thinking of it as
being part of a curvature of spacetime. This is done so that Newton’s first axiom, which now
reads "the worldline of a body on which no force acts is a straight line in spacetime", can be
taken a measurement prescription for what a straight line is. The problem is, we have had
indices flying about everywhere and so have been committing the crime of relying on charts!

We are now going to rederive our result without making reference to a chart at all. We
are doing this afresh, and so should not use the results we just obtained (e.g. Γα00 = −fα).
In order to do this, we need to introduce a few definitions.

Definition (Newtonian Spacetime). A Newtonian spacetime is a quintuple of structures
(M,O,A,∇, t) where (M,O,A) is a 4-dimensional smooth manifold and t : M → R is a
smooth function called the absolute time, which satisfies:

(i) (dt)p 6= 0 for all p ∈M — there is a concept of absolute space (defined below),

(ii) ∇dt = 0 everywhere — absolute time flows uniformly,

(iii) ∇ is torsion free.

Definition (Absolute Space). Let (M,O,A,∇, t) be a Newtonian spacetime. Absolute
space at time τ is the set

Sτ := {p ∈M| t(p) = τ}.
4The name derives from the fact that its due to this that the moon creates tides in the oceans/seas.
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It follows that

M =
•⋃
τ

Sτ .

Condition (i) in the definition of Newtonian spacetime is what gives us the disjoint union
in the definition of absolute time. That is, condition (i) says the surfaces of absolute space at
different times must not meet, as if they did the gradient of t would vanish. Note it is only
once we introduce the absolute time function that we can think of splitting spacetime into
space and time, before that it was just a 4-dimensional manifold.

Definition (Future Directed / Spatial / Past Directed). A vector X ∈ TpM is called

(i) Future directed if dt : X > 0,

(ii) Spatial if dt : X = 0, and

(iii) Past directed if dt : X < 0.

We see the above definition nicely pictorially. Let τ2 > τ1, then we have the following
picture.

Sτ2

Sτ1

Future directed

Spatial

Past directed

We can now reword Newton’s laws as

(I) The worldline of a particle under the influence of no force (gravity is not one here) is a
future directed autoparallel. That is ∇vγvγ = 0 and dt : vγ > 0 everywhere.

(II) The acceleration along a worldline is

aγ := ∇vγvγ =
F

m
,

where the force, F , is a spatial vector field, dt : F = 0, and where m is the mass of the
particle.
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9.4 Acceleration

Convention. Restrict attention to atlases Astratified where the chart (U, x) have the property
that x0 = t|U . That is the first chart map coincides with the absolute time function. This
convention, along with condition (ii) in the definition of Newtonian spacetime gives us

0 = (∇adx0)b = −Γ0
ba

for a, b = 0, 1, 2, 3. So in a stratified atlas all the Γs with an upper 0 index vanish.

Let’s now evaluate Newton II in a stratified atlas. LetX(λ) denote the particle’s worldline,
then we have

∇vXvX =
F

m
.

We have

(Xα)′′ + Γαγδ(X
γ)′(Xδ)′ + 2Γα0γ(Xγ)′(X0)′ + Γα00(X0)′(X0)′ =

Fα

m
,

for α = 1, 2, 3, where we have used the fact that Newtonian spacetime is torsion free and so
the Γs are symmetric in the lower indices.

Now, using the fact that F is a spatial vector field (so F 0 = 0) we also have

(X0)′′ + Γ0
ab(X

a)′(Xb)′ = 0

(X0)′′ = 0

=⇒ X0(λ) = aλ+ b

(t ◦X)(λ) = aλ+ b,

for a, b ∈ R. This gives us the idea that we can reparameterise our curve in terms of the
absolute time, and we get

d

dλ
−→ a

d

dt
.

Subbing this into the expression for the spatial components to give

Ẍα + ΓαγδẊ
γẊδ + 2Γα0γẊ

0Ẋγ + Γα00Ẋ
0Ẋ0 =

Fα

a2m
.

Now recalling Remark 8.3.1, we see that it is the entire left-hand side that is the (α component
of the) acceleration, not just Ẍα. This is a really profound result and it explains a lot of the
stuff you hear about lower down in education.

First we note that the Γα00 term is non-zero in the presence of gravity, it is −fα. So let’s
assume there is no gravity so this term vanishes. Now, there exists a chart such that all the
Γs vanish and we are simply left with Ẍα = Fα/a2m, which is our usual result. However if
we simply just choose another chart, Γs will start to appear! Obviously physically nothing
has changed, but it appears that looking at the problem in different ways introduces new
‘accelerations’ (quotation marks because we know they aren’t real accelerations, only their
sum is). These are charts in spacetime, not just space and so we need to make sure we account
for this.

The Γαγδ terms arise if we simply choose another coordinate system, e.g. instead of
considering Cartesian coordinates we could use polar coordinates for the spatial part and
leave time unchanged.
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t

All Γs vanish

t

Γαγδ terms present

The Γα0γ terms arise when your charted spatial slices ‘move’ in time. For example if the
chart it made up lots of spatial slices that rotate about the time axis, which we’ll call a rotating
chart. It is important to note that it is only the chart that rotates, its not that the actual,
real world, spatial slices are rotating. In this case both the Γα00 and Γα0γ terms appear and
they represent the so-called centrifugal and Coriolis pseudo-accelerations. The ‘pseudo’ tells
us that something is not quite right about them being accelerations, and now we understand
why: they are not accelerations in themselves but only the sum is an acceleration.



10 | Metric Manifolds

We establish a structure on a smooth manifold (M,O,A) that allows us to assign vectors in
each tangent space a length and1 an angle between vectors in the same tangent space. Such a
structure in each tangent space is a inner product, and the complete structure over all tangent
spaces is what we call a metric (i.e. it is a inner produce field).

From this structure, one can then define a notion of length of a curve. Then we can look at
shortest (and longest) curves, which are known as geodesics. We will develop this completely
independently of the notion of straight curves, i.e. of the covariant derivative, but then shall
insist, for obvious reasons, at the end that the two coincide. In doing this we will define what
we mean by so-called metric compatible connections.

10.1 Metrics

Definition (Metric). A metric g on a smooth manifold (M,O,A) is a (0, 2)-tensor field
satisfying:

(i) It’s symmetric; g(X,Y ) = g(Y,X), for all X,Y ∈ ΓTM, and

(ii) Non-degeneracy; the map [ : ΓTM→ ΓT ∗M, given by

[(X) : Y := g(X,Y ),

is a C∞-isomorphism, i.e. it is invertible and smooth in both directions.

Definition (Inverse Metric). The inverse metric, g−1 : ΓT ∗M×ΓT ∗M ∼−→ C∞(M), w.r.t.
a metric g is the symmetric, (2, 0)-tensor field defined by

g−1(ω, σ) := ω : [−1(σ).

Remark 10.1.1 . One needs to be careful when referring to g−1 as an inverse. It is not an
inverse in the sense of a map, but in the matrix sense. That is the map inverse of g :
ΓTM×ΓTM ∼−→ C∞(M) would be a map from C∞(M) to ΓTM×ΓTM, which g−1 is not.
If we denote2 the components of g−1 simply as gab (so no −1 in it), then what we mean by
inverse is that the following holds:

gacgcb = δab .

1If we were only looking to define a length, we would just define a norm on our manifold. For more
information on norms see Dr. Schuller’s Lectures on Quantum Theory.

2And we will from this point on-wards.

72
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Remark 10.1.2 . It is very common for people to talk about ‘raising/lowering’ indices using
the metric/inverse metric. What they mean is the idea that [(X) is a covector and so has a
covariant index. However, we’re lazy and so we don’t want to have to keep writing the [ bit
and so we just write

Xa := gamX
m,

and similarly for a covector made into a vector via [−1. The clear problem is that, unless
specified, we don’t know whether Ta are the components of a covector defined completely
independently of the metric or whether they are the ‘lowered’ components of a vector, and
so is dependent on the metric. In these notes we shall never suppress the metric and so shall
not talk about ‘raised/lowered’ indices.

Example 10.1.3 . Consider the smooth manifold (S2,O,A) with the chart (U, x) corresponding
to spherical coordinates (θ, ϕ).3 Define the metric as4

gij
(
x−1(θ, ϕ)

)
:=

(
R2 0
0 R2 sin2 θ

)
ij

.

This gives us the round sphere of radius R. Note, just as with the connection, defining a
metric allows us to give the manifold shape. Note also, though, that, unlike the round sphere
obtained using the connection, we can talk about the size of the round sphere obtained from
the metric.

10.2 Signature

Recall the eigenvalue equation
Av = λ · v,

where v is an eigenvector. If we want to express this in terms of components, it is clear that
A must be a (1, 1)-tensor, otherwise we break Einstein summation convention. That is

Aamv
m = λ · va

is the only valid index placement. If we represent A as a matrix, it is a well known result of
linear algebra that we can bring it to the form

A = diag(λ1, λ2, ..., λd),

where d is the dimension of the vector space.
We want to have a similar thing for tensors of different ranks. For (0, 2)-tensors, in

particular the metric, we have the signature of g which has only +1,−1, and 0 on the diagonal.
One should be careful, though, as these are not simply eigenvalues for g; the first reason being
we just argued that eigenvalues only make sense for (1, 1)-tensors, and besides that it turns

3Again this chart does not cover the whole manifold, but requires that we remove two antipodal points
and a line of longitude. Note also that we have not equipped our manifold with a connection and so it doesn’t
actually have a shape yet!

4The notation here just means that we collect the 4 components of g into a matrix where i tells us the row
and j tells us the column. For more information on this see, for example, section 1.5 of Manifolds, Tensors,
and Forms: An Introduction for Mathematicians and Physicists by Paul Renteln.
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out that we can always transform to a chart such that the signature is only +1,−1 and 0s,
which you can not do for eingenvalues in general.

Actually what we want to define as the signature is the double (p, q) where p is the number
of +1s and q is the number of −1s. This is the definition we shall use in these notes, but it
is important to be aware that others refer to different, but related, things as the signature.5

Claim 10.2.1 . The signature is independent of the choice of chart. That is the values of p
and q do not depend on what basis you use in order to write down the matrix components.

Notation. We shall use the standard notation of +s and −s as a d-tuple to indicate the
signature. For example if d = 3, p = 2 and q = 1 we write (+,+,−). The position in
the tuple corresponds to the corresponding metric components. So for our example g11 = 1,
g22 = 1 and g33 = −1 in this basis.

Remark 10.2.2 . What we are really interested in the the relative sign between the components
of the metric, and so we could easily have switched p↔ q in the definition and proceeded from
there, i.e. our example in the above notation would become (−,−,+). It does not matter
which we pick, as long as we are consistent. Our choice of signature is given by the following
two definitions.

Definition (Riemannian Metric). Ametric is calledRiemannian if its signature is (+,+, ...,+).

A metric with any other signature (apart from (−,−, ...,−) of course) is called pseudo-
Riemannian. Of particular importance in general relativity is the following case.

Definition (Lorentzian Metric). Ametric is called Lorentzian is its signature is (+,−, ...,−).

Remark 10.2.3 . The convention given for the Riemannian metric is almost always the one
used, however for Lorentzian metrics its about a 50/50 split between people who use (+,−, ...,−)
and people who use (−,+, ...,+). We will use the one given in the definition.6

Exercise

Show that the metric non-degeneracy condition for a Riemannian metric is equivalent
to the non-degeneracy of an inner product. That is

g(X,Y ) = 0, ∀Y ∈ ΓTM ⇐⇒ X = 0.

Hint: Think about what it means for a matrix to be invertible and then decompose X
and Y in a basis.

5For example some people call the single number (−1)q the signature. This just tells you whether there is
an even or odd number of −1s. This convention is only used when you are considering the case when there
are no 0s, which is true if the tensor is non-degenerate, e.g. the metric.

6Personally I prefer the second one, as I prefer to think of spatial lengths as positive (this statement will
make sense shortly), however I shall stick with Dr. Schuller’s for consistency with the videos. This is just a
footnote as a warning that I might (but hopefully won’t) use the wrong convention in a calculation later.
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10.3 Length Of A Curve

Let γ : R → M be a smooth curve, then we know its velocity vγ,γ(λ) at each γ(λ) ∈ M.
On a topological manifold this is as far as we can go, but on a metric manifold we have the
following.

Definition (Speed of a Curve). On a Riemannian metric manifold (M,O,A, g), the speed
of a curve at γ(λ) is the number

s(λ) :=
√
g(vγ , vγ)

∣∣∣
γ(λ)

Remark 10.3.1 . Although we might expect the velocity components va to have units LT−1,
this is not true; they have units T−1. The apparent ‘loss’ of the distance comes from the fact
that the components are chart dependent objects and the distance in a chart is physically
meaningless and so we cannot attach physical units to it. The speed, however, does have units
LT−1, which tells us that the metric components must have units L2.

Definition. Let γ : (0, 1)→M7 be a smooth curve. Then the length of γ is the number8

L[γ] :=

∫ 1

0
dλ s(λ).

What we have just seen is that the velocity is actually the fundamental object and from
it we derive the speed and from that we get the length of a curve. This is entirely opposite
to what we learn lower down in school!

Example 10.3.2 . Reconsider the round sphere of radius R. Consider its equator,

θ(λ) := (x1 ◦ γ)(λ) =
π

2
ϕ(λ) := (x2 ◦ γ)(λ) = 2πλ3.

The length of this curve is

L[γ] =

∫ 1

0
dλ

√
gij

(
x−1

(
θ(λ), ϕ(λ)

))
(x1 ◦ γ)′(λ)(x2 ◦ γ)′(λ).

Using
gij = diag(R2, R2 sin2 θ), θ′(λ) = 0, and ϕ′(λ) = 6πλ2,

we have

L[γ] =

∫ 1

0
dλ
√
R2 sin2

(
θ(λ)

)
36π2λ4

= 6πR

∫ 1

0
sin(π/2)λ2

= 6πR · 1

3
= 2πR.

7We are free to choose the domain of γ to be (0, 1) by simply rescalling/shifting λ accordingly.
8We have used square brackets around γ below because it is a function. This tells us that L is a so-called

functional. Anyone unfamiliar with this terminology is referred to a course on Lagrangian mechanics.
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Note that although we used a seemingly funny parameterisation (i.e. λ3 not just λ) in
the above example, the answer still came out as we would like. This is obviously because no
where in the definitions above did we talk about how we parameterise the curve. Physically
it makes sense that the length of the curve is independent of it: the length of your walk does
not depend on how quickly you do it, or if you even do it at a constant speed (provided you
don’t turn around and walk backwards on yourself at any point). This can be written nicely
as the following theorem.

Theorem 10.3.3. Let γ : (0, 1)→M be a smooth curve and let σ : (0, 1)→ (0, 1) be smooth,
bijective and increasing, then L[γ] = L[γ ◦ σ].

10.4 Geodesics

Definition (Geodesic). A curve γ : (0, 1) → M is called a geodesic on a Riemannian
manifold (M,O,A, g) if it is a stationary9 curve w.r.t. the length functional L.

Theorem 10.4.1. The curve γ : (0, 1)→M is a geodesic if and only if it satisfies the Euler
Lagrange equations for the Lagrangian

L : TM→ R

X 7→
√
g(X,X).

In a chart, this is
L(γi, γ̇i) =

√
gij
(
γ(λ)

)
γ̇i(λ)γ̇j(λ).

Finding the Euler Lagrange equations proceeds as follows:

∂L
∂γ̇m

=
1
√
...
gmj
(
γ(λ)

)
γ̇j(λ)

∴
d

dλ

(
∂L
∂γ̇m

)
=

d

dλ

(
1
√
...

)
gmj
(
γ(λ)

)
γ̇j(λ) +

1
√
...

(
gmj
(
γ(λ)

)
γ̈j(λ) + γ̇s(λ)

[
∂sgmj

(
γ(λ)

)]
γ̇j(λ)

)
.

Now we’re stuck with the ugly task of trying to work out d
dλ

(
1√
...

)
. However, we have already

demonstrated that the length of the curve is independent on how we choose to our parameter.
We are free, therefore, to choose it to be something convenient, and we simply take it to be
such that g(γ̇, γ̇) = 1, that is the speed it one along the whole curve. We then just have

d

dλ

(
∂L
∂γ̇m

)
= gmj

(
γ(λ)

)
γ̈j(λ) + γ̇s(λ)

(
∂sgmj

(
γ(λ)

))
γ̇j(λ).

We also need to find
∂L
∂γm

=
1

2

(
∂mgij

(
γ(λ)

))
γ̇i(λ)γ̇j(λ),

where we have already imposed our parameter choice condition. So our Euler Lagrange
equations are (dropping the (λ)s for notational brevity)

gmj γ̈
j + (∂igmj)γ̇

iγ̇j − 1

2
(∂mgij)γ̇

iγ̇j = 0.

9In the sense of Lagrangians in classical mechanics.
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Multiplying both sides by the inverse metric gmq and using the condition gmqgmj = δqj , we
have

γ̈q + gqm
(
∂igmj −

1

2
∂mgij

)
γ̇(iγ̇j) = 0,

where the brackets on the last two indices indicate the symmetry γ̇iγ̇j = γ̇j γ̇i. Using this
symmetry we can double the first term by switching i↔ j, giving us

γ̈q +
1

2
gqm

(
∂igmj + ∂jgmi − ∂mgij

)
γ̇(iγ̇j) = 0.

This is the geodesic equation for the components of γ in a chart. We can write this in the
form of an autoparallel10 equation by introducing the following definition.

Definition (Christoffel Symbols). Given a metric g and a chart (U, x), we define theChristof-
fel symbols (or Levi-Civita connection coefficients) as

LCΓqij
(
γ(λ)

)
:=

1

2
gqm

(
∂igmj + ∂jgmi − ∂mgij

)
,

where the components of the metric (and its inverse, obviously) are taken in the chart given.

Notation. We can lighten the notation slightly by defining

gij,m := ∂mgij ,

and similarly for any other tensor rank. That is, we simply denote a partial derivative in a
chart by a comma and the index follows it is the derivative entry. This notation is very useful,
as it can be used along side the semi-colon notation for the covariant derivative

Tjk;i := (∇iT )jk

We shall adopt this notation in these notes, however the reader is warned that Dr. Schuller
does not use this notation, and so to make sure they can transition between the two when
comparing these notes to the lectures.

This process, specifically the point at which we say that the LCΓs come from a connection,
LC∇, identifies the shortest11 curves (geodesics) with straight curves (autoparallels). This is
clearly a physically very reasonable, and correct, thing to do. It is important to note, though,
that up until this point, geodesics and autoparallels are completely separate entities.

Note by making this identification, we obtain the connection from the metric. That is, we
do not need to provide both a metric and a connection, but by simply providing a metric we
can obtain a unique connection such that the shortest curves and the straight curves coincide.
This sounds like a chart dependent thing, and therefore not a good thing to do. However the
following theorem puts our minds to rest on this point, letting us know everything is OK.

Theorem 10.4.2. Let (M,O,A, g,∇) be a topological manifold equipped with both a metric
and a connection. If

10I.e. in the form γ̈q + Γqij γ̇
iγ̇j .

11Again strictly speaking they’re are just maximal curves, so it’s also true for longest curves and curves
corresponding to points of inflection.
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(i) ∇ is torsion free, and

(ii) ∇g = 0, known as metric compatibility,

then we can conclude ∇ =LC ∇.

Proof. See tutorials.

Exercise

Show that the metric compatibility condition allows us to ‘move the metric in and out
of the covariant derivative’. That is,

g · ∇T = ∇g · T.

Finally for this lecture, let’s introduce some definitions. As we see, all of them are directly
related to the metric.

Definition (Riemann Christoffel Curvature). Let (M,O,A, g) be a metric manifold. The
components of the Riemann Christoffel curvature are defined by

Riemabcd := gamRiemm
bcd,

where Riemm
bcd are the Riemann tensor components obtained from the Levi-Civita connection

LC∇.

Definition (Ricci Scalar). Let (M,O,A, g) be a metric manifold and let Riem be the Rie-
mann tensor obtained from the Levi-Civita connection. We then define the Ricci scalar
as

R = gabRicab,

where Ricab := Riemc
acb are the components of the Ricci curvature tensor.

Definition (Einstein Curvature). Let (M,O,A, g) be a metric manifold and let Riem be the
Riemann tensor obtained from the Levi-Civita connection. We define the components of the
Einstein curvature as

Gab := Ricab −
1

2
gabR,

where Ric and R are the Ricci curvature and Ricci scalar, respectively.

It is important to note that these quantities are not only related to the metric through
its direct appearance in the expressions, but also through the fact that, in order to define the
Riemann curvature tensor we need a connection and for all of them we used the Levi-Civita
connection, a metric dependent object. For this latter reason, the Ricci curvature tensor
(defined previously) is also a metric dependent object.

As all of the names above suggest, we have just established a link between the curvature
of the spacetime and the metric structure.12 This is the first major step into understanding
the main principles of general relativity: that matter generates curvature on the spacetime.

12In fact we made this identification the moment we insisted geodesics and autoparallels coincided, as we
then established a link between the metric and the covariant derivative, which we’ve seen encodes curvature.
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Remark 10.4.3 . The above definitions can, of course, all be expressed in a chart free manner
as they are tensors, however the notation can be a bit confusing and it’s much easier to see
in component form, hence why we have defined it this way.

Exercise

Show that Riemabcd have the correct transformation behaviour the components of a
(0, 4)-tensor field. From this is follows analogously that the remaining definitions are
indeed tensors.



11 | Symmetry

We have the intuitive feeling that the round sphere of radius R, (S2,O,A, ground), has rota-
tional symmetry, while the potato (S2,O,A, gpotato) does not.

Prior to this course we have been taught1 to think of symmetries as a group of maps which
map the object to itself, while preserving all of the structures of the object. For example,
3-dimensional rotational symmetry is often given by the SO(3) group. In teaching this, we
make use of the inner product available to us. The method we’re about to describe here is
actually subtly different. As we have just seen above, it is through the introduction of the
metric that we get symmetries. That is, the symmetries are not something else we provide as
well as providing the metric, they come as a consequence of which metric we provide. Now
it’s reasonable to think ‘well the metric provides a inner product in each tangent space, so
we could make a connection to the previously taught idea?’ This is where the subtle nature
comes in. What they metric is a tensor field, and so tells us how to distribute these inner
products over all the tangent spaces. So the symmetry appears not to come from the inner
products themselves but somehow from their distribution over the manifold.

So we want to answer the question ‘how do we describe the symmetries of a metric?’ This
is not just a matter of academic interest, but actually is very important when it comes to
studying the physical solutions. For example, the only way to solve Einstein’s equations is to
provide some symmetry conditions for the spacetime (i.e. the Universe).

11.1 Push-Forward Map

Definition (Push-Forward Map). Let φ : M → N be a smooth map between two smooth
manifolds. Then we define the push-forward map φ∗ : TM→ TN by

φ∗(X)〈f〉 := X〈f ◦ φ〉,

where f ∈ C∞(N ), i.e. f : N → R.

Diagrammatically, the maps in the above definition are related by the following diagram.

φ∗

πM πN
φ f

TM TN

M N R
1Well I was and am assuming the reader was too.

80
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Corollary 11.1.1. Recall that the fibres of the tangent bundle are just the tangent spaces to
that point, i.e. preimπMp = TpM. It follows, then, that

φ∗
(
TpM

)
⊆ Tφ(p)N .

That is, the image of the p-fibres onM are at least contained within the φ(p)-fibres on N .

There is a mnemonic to remember what the push forward does: "vectors are pushed
forward".

It is worth looking at the components of the push-forward map in the two charts (U, x) ∈
AM and (V, y) ∈ AN . We have, for p ∈M

φ a
∗ i := dya : φ∗

((
∂

∂xi

)
p

)
= φ∗

((
∂

∂xi

)
p

)
〈ya〉 =

∂(y ◦ φ)a

∂xi
=:

∂φ̂a

∂xi
,

where a ∈ {1, ...,dimN} and i ∈ {1, ...,dimM}. Note that φ̂ := (y ◦ φ) is a map φ̂ : U →
RdimN .

The following figure gives a nice pictorial description of the push-froward map.

M N

γ

p

vγ,p

(φ ◦ γ)φ(p)

φ∗(vγ,p)
φ

Figure 11.1: Given two smooth manifolds and a smooth map φ :M→N , the push for-
ward, φ∗, maps tangent vector, vγ,p of curve γ at point p ∈M to from the corresponding
tangent vector, φ∗(vγ,p), of curve (φ ◦ γ) at point φ(p) ∈ N .

Corollary 11.1.2. Looking at Figure 11.1, we see that φ∗ : vγ,p 7→ v(φ◦γ),φ(p).

Proof. Let f ∈ C∞(N ) and let p ∈M be such that γ(λ0) = p. Then

φ∗
(
vγ,p
)

:= vγ,p(f ◦ φ)

=
(
(f ◦ φ) ◦ γ

)′
(λ0)

=
(
f ◦ (φ ◦ γ)

)′
(λ0)

= v(φ◦γ),(φ◦γ)(λ0)

= v(φ◦γ),φ(p).
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Example 11.1.3 . An important/interesting example of use of the push-forward is when φ is
an embedding map2 from a d-dimensional manifold to a (d+ 1)-dimensional manifold.

For obvious pictorial reasons, let d = 1.3 If γ : (0, 1)→M is a curve in this 1-dimensional
manifold, then vγ,p is an element of the 1-dimensional tangent space TpM. Let φ :M ↪→ N
be an embedding ofM into N , where dimN = 2. Then the velocity v(φ◦γ),φ(p) is an element
of the 2-dimensional tangent space Tφ(p)N . This allows us to make a connection between the
intrinsic vector vγ,p and the extrinsic vector v(φ◦γ),φ(p).

As an analogy, consider an ant walking along a wire laid down on a table. The vector
vγ,p would be what the ant (who is oblivious to the higher dimensional space) itself says its
velocity is, whereas v(φ◦γ),φ(p) is what we (who have a birds eye view of the table) would say
the ant’s velocity is.

vγ,p

p

γ

N = R

φ(p)

φ ◦ γ

v(φ◦γ),φ(p)

M = R2

11.2 Pull-back Map

Definition (Pull-back). Let φ :M→ N be a smooth map between two smooth manifolds.
Then we define the pull-back map as φ∗ : T ∗N → T ∗M via

φ∗(ω) : X := ω : φ∗(X).

for ω ∈ T ∗N and X ∈ TM.

Again let’s look at the components with respect to the two charts (U, x) ∈ AM and
(v, y) ∈ AN .

φ∗ ai := φ∗
(
(dya)φ(p)

)
:

(
∂

∂xi

)
p

= (dya)φ(p) : φ∗

((
∂

∂xi

)
p

)
=: φ a

∗ i,

so the components of the pull-back and the components of the push-forward are the same!
Just as we showed that the push-forward of a velocity to a curve was the velocity of the

mapped curve, the pull-back of the gradient of some function is the gradient of a function
that is mapped to the other function. That is

φ∗(df) = d(f ◦ φ).

This result can be obtained in a similar manner to the push-forward calculation (see tutorial),
or it follows immediately from the following proposition and definition.

2It is important we use an embedding here and not just an immersion, which can have self-intersections.
If we had self intersections we would not have a unique tangent vector to the mapped curve. For more details
on embeddings and immersions, see section 3.6 of Renteln’s Manifolds, Tensors and Forms textbook.

3We could also use d = 2, but that will be significantly harder for me to draw in Tikz, so d = 1 it is.
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Proposition 11.2.1. The pull-back map and the map d commute. That is

φ∗(d•) = d(φ∗•).

Definition. Let φ : M → N be a smooth map between two smooth manifolds. Then the
pull back of f ∈ C∞(N ) is given by

φ∗(f) := f ◦ φ.

The mnemonic phrase here is "covectors are pulled back."

11.3 Induced Metric

There is an important application for the pull-back. Again consider φ : M ↪→ N as an
embedding with dimM < dimN . Now let the smooth manifold with N be equipped with a
metric, g. We now want to ask whether we can use this metric to define one on the manifold
withM, which we shall call the induced metric, gM. The metric is a (0, 2)-tensor field, and
so can be pulled-back. The question we want to answer is "But how do we define such a
metric?"

The way we want this to work is the following. We want to work out the length of a path,
γ, between two points on M using gM. We take the value to be the length of the mapped
path, γ ◦ φ, obtained using g.

Now obviously there is more then one way to embed the space. Each one of these em-
beddings gives a potentially different length, and so defines a different metric (and shape) for
(M,O,A). To use the examples referred to frequently in these notes, the smooth manifold
(S2,O,A) can be either a round sphere of radius R or a potato. We can decide which it is
by defining an embedding φ : S2 ↪→ R3 such that the induced metric gives the correct shape.
This is what our eyes do when differentiating a football4 from a potato; they look at the
lengths between points using our 3D Euclidean metric and conclude that the induced metric
is that of a football (or potato).

We can write this mathematically as the following definition.

Definition (Induced Metric). Let (M,O,A) and (N ,O,A) be a smooth manifolds, with
|M| ≤ |N |.5 and let φ : M ↪→ N be an embedding. Now equip (N ,O,A) with a metric g.
We define the induced metric onM as the pull back gM := φ∗g, which satisfies6

gM(X,Y ) := g
(
φ∗(X), φ∗(Y )

)
,

for all X,Y ∈ ΓTM.

The above condition in the definition can be written in components as

(gM)ij = gab
∂φ̂a

∂xi
∂φ̂b

∂xj
,

where φ̂ = (y ◦ φ), as in the calculation for the components of the push-forward.
4That is ‘Soccer’ to some.
5The vertical lines indicate the so-called cardinality of the set, i.e. how many elements are in it.
6The push-forward of a vector field is simply defined point wise, i.e. push-forward each vector and make a

vector field.
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Example 11.3.1 . Pictorially we can see the above ideas via the following drawings. Let
(M,O,A) be some 2-dimensional smooth manifold and let (N ,O,A, g) = (R3,Ost,A, gE),
the Euclidean 3-space. We could define an embedding φ :M ↪→ R3 such that (M,O,A) looks
dome shaped w.r.t. the metric gE . We can then pull this metric back onto theM manifold
itself, giving the induced metric space (M,O,A, gM).

(M,O,A)

φ

(R3,Ost,A, gE)

φ∗

(M,O,A, gM)

It is important to note that we only have a dome shape both in the embedding and as the
induced metric because we are considering the embedding space to be the Euclidean 3-space.
That is, when we draw the diagrams on the far right, we are seeing it as being embedded in
Euclidean 3-space. This is the comment made about what our eyes do to give differentiate
between footballs and potatoes.

11.4 Flow of a Complete Vector Field

Definition (Integral Curve). Let (M,O,A) be a smooth manifold and let γ : (a, b)→M be
a smooth curve with (a, b) ⊆ R. If we have a vector field X ∈ ΓTM, then γ is said to be an
integral curve of X if

vγ,γ(λ) = Xγ(λ).

That is, the tangent vectors to the curve reproduce the vector field constrained to the curve.

Example 11.4.1 . An example of a integral curve would be that corresponding to a paper ship
floating down a river. The vector field X would be the velocity field of the water molecules
and the curve γ would be the trajectory of the ship.

Definition (Complete Vector Field). A vector field X ∈ ΓTM is called complete if all
integral curves have domain R (i.e. (a, b) = R).

It is tempting to think that this is always possible because you can just reparameterise γ
such that (a, b) = R, right? Well it’s true that you can do this, but in doing so you change
the absolute value/length of the tangent vectors and then they no longer coincide with the
vector field vectors. So the choice of parameterisation if chosen by the absolute values of the
vectors in the vector field.

Following from the above point, note that for a vector field to be complete it is important
that we don’t remove points from the domain of the vector field. If we did this, the integral
curve through that point would then have finite length and so we would not be able to extend
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the interval (a, b) to the whole of R without breaking the integral curve nature. This is a really
important point because it leads the way to a proper understanding of singularity7 theorems.

This result is contained within the following theorem.

Theorem 11.4.2. A compactly8 supported, smooth vector field is complete.

X
γ

σ
Y

δ

Figure 11.2: Left: γ is an integral curve of the smooth vector field X as its tangent
vectors at all points reproduce the vector field at those points. σ is not a integral curve
as the tangent vectors do not coincide with the vector field vectors at that point. Right:
Example of a complete vector field, Y . The integral curves, δ, are closed and therefore
have domain R. If we were to remove one point in the space, we would not longer have
a complete vector field as one of the integral curves would then have finite length.

Definition (Flow of a Complete Vector Field). The flow of a complete vector field
X ∈ ΓTM is a one-parameter family

hX : R×M→M
(λ, p) 7→ γp(λ),

where γp : R→M is the integral curve of X with γ(0) = p.

We can use the above definition to introduce a new map by simply taking a fixed value
for λ. That is, for fixed λ ∈ R we have the smooth map

hXλ :M→M,

which takes every point inM and moves it a parameter distance λ along the integral curve
through that point.

7A singularity can be thought of as a point that is removed from the spacetime because, for example, the
curvature blows up there.

8A topological space is said to be compact if every open cover has a finite subcover. For more details see,
e.g., Renteln’s Manifolds, Tensors, and Forms textbook.
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11.5 Lie Subalgebras of the Lie Algebra (ΓTM, [·, ·]) of Vector Fields

Definition (Lie Algebra). A Lie algebra is a vector space9 g equipped with a bilinear
operation [·, ·] : g× g→ g, known as the Lie bracket, that also satisfies

(i) Antisymmetry: [x, y] = −[y, x],

(ii) The Jacobi identity :
[
x, [y, z]

]
+
[
z, [x, y]

]
+
[
y, [z, x]

]
= 0

Definition (Structure Constants). Let (g, [·, ·]) be a Lie algebra. We define the structure
constants of the Lie algebra, Ckij ∈ F, via

[xi, xj ] = Ckijxk

for xi ∈ g and i, j, k ∈ {1, ...,dim g}.

Recall in lecture 8 we defined the commutator of two vector fields as

[X,Y ]〈f〉 = X
〈
Y 〈f〉

〉
− Y

〈
X〈f〉

〉
.

We want to make this into a Lie bracket, however we have to address a problem. As it
stands we are considering the C∞-module (ΓTM,⊕,�), but our commutator does not obey
C∞-bilinearity. That is

[f �X,Y ] 6= f � [X,Y ].

However, it does obey R-bilinearity.

Proposition 11.5.1. If we therefore restrict ourselves to the R-vector space (ΓTM,+, ·) then
the commutator becomes a Lie bracket.

Notation. We will denote the Lie algebra of vector fields as just (ΓTM, [·, ·]), but it is impor-
tant to remember that we are considering the restricted to case of · : R×ΓTM→ ΓTM, i.e.
R-vector space.

Exercise

(a) Show the above inequality, [f �X,Y ] 6= f � [X,Y ].

(b) Prove Proposition 11.5.1.

Definition (Lie Subalgebra). Let (g, [·, ·]) be a Lie algebra. A vector subspace a ⊆ g is called
a Lie subalgebra if it is closed under the Lie bracket. That is, [x, y] ∈ a for all x, y ∈ a.

By restricting to R-linearity we get an infinite dimensional vector space. This just comes
from the fact that we can only scale the basis vector fields by the same amount at each point (as
opposed to with C∞-linearity), and so we need an infinite number of them to have a complete
basis. However, we can just restrict ourselves to a subalgebra (spanR{X1, ..., Xs}, [·, ·]) of
finite dimension.

9In fact you only need a module over a commutative ring.
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Example 11.5.2 . An example of such a Lie subalgebra on (S2,O,A) is10

so(3) := (spanR{X1, X2, X3}, [·, ·]),

where
[X1, X2] = X3, [X3, X1] = X2 and [X2, X3] = X1.

This is the 3-dimensional rotation Lie algebra, and finds important use in quantum mechan-
ics.11

Remark 11.5.3 . In the tutorials we show that

X1(p) = − sin
(
ϕ(p)

) ∂
∂θ
− cot

(
θ(p)

)
cos
(
ϕ(p)

) ∂
∂ϕ

,

X2(p) = cos
(
ϕ(p)

) ∂
∂θ
− cot

(
θ(p)

)
sin
(
ϕ(p)

) ∂
∂ϕ

,

X3(p) =
∂

∂ϕ
,

is of the form above, justifying why it is often called the 3-dimensional rotation algebra.

Note that we can made no reference to a metric at any point here, and so any {X1, X2, X3}
that satisfies the above will hold on both the round sphere of radius R and on the potato.

11.6 Symmetry

Definition (Symmetry of a Metric). Let (M,O,A, g) be a metric manifold, and let {X1, .., Xs} ⊂
ΓTM. Define L := spanR{X1, ..., Xs}, then the s-dimensional Lie subalgebra (L, [·, ·]) is said
to be a symmetry of a metric tensor field g, if for all X ∈ L

g
(
(hXλ )∗(A), (hXλ )∗(B)

)
= g(A,B),

for A,B ∈ TpM and (hXλ )∗ is the push-forward of the flow of X. We can write this alterna-
tively as

(hXλ )∗g = g,

where (hXλ )∗ is the pull-back associated to the flow of X.

The first part in the above definition basically says that the angle and projection between
A and B (which the metric tells you) does not change if you move both A and B along the
integral curves of X. For example, for the round sphere of radius R, if we move A and B
around the sphere in the ‘θ’-direction then obviously nothing changes.

The second part just says if we move the metric ‘backwards’ along the integral curves, it
still looks the same. This is again intuitively clear for a round sphere when we rotate the
sphere. It is not true, however, for the potato, because by moving the metric, the shape of
the potato moves. This is clearly just the statement that the round sphere is rotationally
symmetric, but the potato is not.

10We’re actually being a bit clumsy here. so(3) is the Lie algebra of the Lie group SO(3), which is a manifold
equipped with a group structure.

11For more details see Dr. Schuller’s Lectures on Quantum Theory course.
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11.7 Lie Derivatives

The above test for symmetry is very intuitive but it has the major flaw that you have to do a
lot of calculation. We therefore typically don’t use that method, but instead use the following
one.

It follows from the above that if, for all X ∈ L,

lim
λ→0

(
hXλ
)∗
g − g
λ

= 0

holds then L is a symmetry of g. We actually give the left-hand side its own notation. We
define the Lie derivative of a metric g, w.r.t. a vector field X as

LXg := lim
λ→0

(
hXλ
)∗
g − g
λ

.

The Lie derivative is actually quite a subtle thing to define. The definition we’ve used
above makes contact with the pull back ideas we discussed above and so we can think of it as
comparing the ‘dragged back’12 tensor to the tensor as it is. For another explanation of this
see these notes.

Remark 11.7.1 . Alternatively, one can define the Lie derivative using Cartan’s formula. This
useful when discussing the Lie derivative of differential forms. We shall not discuss this further
her, but for the interested reader the formula is LX := dιX − ιXd.13

Given the above comments, we actually define the Lie derivative in a rather abstract way,
but that looks very similar to the definition of the covariant derivative.

Definition (Lie Derivative). The Lie derivative L on a smooth manifold (M,O,A) sends
a pair of a vector field, X, and a (p, q)-tensor field, T , to a (p, q)-tensor field such that: for
f ∈ C∞(M) and Y ∈ ΓTM,

(i) LX = X〈f〉,

(ii) LXY = [X,Y ],

(iii) LX(T + S) = LXT + LXS,

(iv) LX
(
T (ω, Y )

)
= (LXT )(ω, Y )+T

(
LXω, T

)
+T
(
ω,LXY

)
and similarly for different rank

tensors,

(v) LX+Y T = LXT + LY T .

These conditions look very similar to those of the covariant derivative, but with the Lie
derivative we don’t need to provide any extra structure, i.e. don’t need to define any Γs. You
might think that this makes the Lie derivative a more useful derivative, however it comes with
its own flaws.

12Dragged back as the map h is an automorphism, so the pull-back just drags the points backwards.
13d is the exterior derivative, which we have touched on in these notes, and ιX is the so-called interior

derivative w.r.t. X.

http://web.math.ucsb.edu/~ebrahim/liederivs_tame.pdf
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The first thing we notice is that the lower entry for the Lie derivative must be a vector
field. This is different to the covariant derivative, where we can take just a vector here. This
comes from the idea that we need to obtain this flow of X, and that clearly involves knowing
X in a neighbourhood of the point and so it must be a field. Next we notice that condition
(ii) is something not present in the definition of a covariant derivative. It has the drastic
effect on condition (v) whereby the Lie derivative is not C∞-linear in the lower slot (as the
covariant derivative is). This comes simply from

LfXY = [fX, Y ] = f [X,Y ]− Y 〈f〉X.

Exercise

There is another important difference to note. Recall that for the components of the
covariant derivative of a tensor, each upper index came with a + sign and each lower
index came with a − sign. The opposite is true for the Lie derivative. That is,

(LXT )ij = Xm∂T
i
j

∂xm
− ∂Xi

∂xm
Tmj +

∂Xm

∂xj
T im.

Show that this result holds.

Using the relation in the above exercise, the condition LXg = 0 becomes a very easy thing
to solve, and so we obtain a nice way to see if a metric features a symmetry.

11.7.1 Killing Vector Fields

Definition (Killing Vector Field). Let (M,O,A, g) be a metric manifold. A vector field
K ∈ ΓTM is called a Killing vector field (or just Killing field) if it is a symmetry of the
metric, i.e. LKg = 0, which can equally be written as

K
〈
g(X,Y )

〉
− g
(
[K,X], Y

)
− g
(
X, [K,Y ]

)
= 0.

Noether’s theorem tells us that there is a link between symmetries and conservation laws,
and so we see that Killing vector fields correspond to conservation laws. For example, as we
will see later, the vector field which corresponds to temporal translation ∂0 is a Killing vector
field Minkowski spacetime, and gives rise to conservation of energy. Similarly we have Killing
vector fields for momentum conservation.

Exercise

Show that for the Levi-Civita connection the Killing vector field condition becomes

g
(
∇XK,Y

)
+ g
(
X,∇YK

)
= 0.

Hint: You need to use both the metric compatible and the Torsion free conditions.



12 | Integration

This lecture completes our ‘lift’ of analysis on the charts to analysis at the manifold level. It
is the last step in the mathematical foundations before we can move on next lecture to start
to discuss general relativity itself.

The aim is to define a notion of integration at the manifold level, i.e. we want to be able
to compute

∫
M f where f is a smooth function on M. In order to define this, we need to

introduce a mild new structure, known as the volume form. We will also need to restrict our
atlas, giving us a so-called orientation.

12.1 Review of Integration on Rd

The simplest case is that of a function F : R→ R, where we simply have1∫
(a,b)

F :=

∫ b

a
dxF (x),

where the right-hand side integral is some known integration operation (e.g. Riemann inte-
grals).

Next we can consider F : Rd → R. If we are to do this over a box shaped domain,
(a, b)× ...× (u, v) ⊆ Rd, the integral is simply∫

(a,b)×...×(u,v)
ddxF (x) :=

∫ b

a
dx1...

∫ v

u
dxdF (x1, ..., xd).

We can then extend this to general domains (i.e. not necessarily box shaped) G ⊆ Rd by
introducing an indication function µG : Rd → R given by

µG(x) =

{
1 if x ∈ G
0 otherwise.

We then define the integral∫
G
ddxF (x) :=

∫ ∞
−∞

dx1...

∫ ∞
−∞

dxdµG(x)F (x).

We now need to ask how this definition changes under a change of variable (which will
correspond to a change of chart in the lifted notion).

1We are assuming that the following exists. We shall assume that the results exist for this whole section.
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Theorem 12.1.1. Let φ : preimφ(G)→ G denote the change of variable map with G, preimφ(G) ⊆
Rd. Then if the integral of F : G→ R is defined as above we have2∫

G
ddxF (x) =

∫
preimφ(G)

ddy
∣∣det

(
∂aφ

b
)
(y)
∣∣(F ◦ φ)(y),

where
∣∣ det

(
∂aφ

b)(y)
∣∣ is the Jacobian of φ.3

Example 12.1.2 . Consider d = 2 and let G = R2 \ (x, 0), i.e. R2 with the x-axis cut out. Then
let

φ : R+ ×
[
(0, π) ∪ (π, 2π)

]
→ G

(r, ϕ) 7→ (r cosϕ, r sinϕ).

We have (
∂aφ

b
)
(r, ϕ) :=

(
∂r(r cosϕ) ∂r(r sinϕ)
∂ϕ(r cosϕ) ∂ϕ(r sinϕ)

)
=

(
cosϕ sinϕ
−r sinϕ r cosϕ

)
,

so
∣∣det

(
∂aφ

b)(r, ϕ)
∣∣ = |r| = r. This gives∫
G
dx1dx2F (x1, x2) =

∫ ∞
0

dr

∫ 2π

0
dϕ rF (r cosϕ, r sinϕ).

We then say that the volume elements dx1dx2 and rdrdϕ correspond to each other in their re-
spective coordinates. Of course what we have just looked at is simply changing from Cartesian
to polar coordinates.

12.2 Integration on One Chart

Let (M,O,A) be a smooth manifold and let f ∈ C∞(M). Consider charts (U, x), (U, y) ∈ A
with the same domain. Denote f ◦ x−1 =: f(x) : x(U)→ R and similarly for f(y) : y(U)→ R.
We want to define the integral of f over U at the manifold level as something along the lines
of ∫

U
f :=

∫
x(U)

ddα f(x)(α),

where α ∈ Rd is the coordinate tuple in x(U). However, this is not possible as it is not chart
independent. This is seen easily by considering the chart transition map x◦y−1 : y(U)→ x(U):∫

x(U)
ddα f(x)(α) =

∫
y(U)

ddβ
∣∣ det

(
∂a(x ◦ y−1)b

)
(β)
∣∣ f(y)(β)

=

∫
y(U)

ddβ

∣∣∣∣ det

(
∂xb

∂ya

)
y−1(β)

∣∣∣∣ f(y)(β),

2The indices a and b in the determinant do not break Einstein summation convention. What is meant here
is the determinant of the elements, and we know the determinant is invariant of which chart we use (think
about the determinant of a matrix just being the product of the eigenvalues).

3Sometimes the Jacobian is defined without the absolute value part, but here we shall use the whole thing.
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where we have used f(x)◦x◦y−1 = f(y) and our definition of ∂a(x◦y−1)b in terms of the fraction
notation. In general this Jacobian will not be unit, and so we don’t get

∫
U f =

∫
y(U) d

dβf(y)(β),
as is required for chart independence.

The obvious solution to this problem is to try and introduce something to the right-hand
side of our definition of

∫
U f that cancels the Jacobian factor we obtain. Such a structure can

not be define on just a smooth manifold, and we need to introduce a new structure.

12.3 Volume Forms

Definition (Volume Form). Let (M,O,A) be a smooth manifold. We call a (0,dimM)-
tensor field Ω is called a volume form if

(i) it vanishes nowhere; Ω|p 6= 0 for all p ∈M, and

(ii) it is totally antisymmetric; Ω(..., X, ..., Y...) = −Ω(..., Y, ...,X, ...) for all entries.

The obvious question to ask is do we need to provide the volume form by hand or can be
obtain it from some structure we’ve already talked about. The answer is, that we can obtain
it from a metric on a metric manifold. In order to make this definition we have to introduce
the Levi-Civita symbol.

Definition (Levi-Civita Symbol). The Levi-Civita symbol in d dimensions is denoted
εi1...id and is defined via the following two properties:

(i) ε123...d = 1, and

(ii) total antisymmetry, i.e. it flips sign when any two indices are exchanged

εi1...ij ...ik...id = −εi1...ik...ij ...id

Remark 12.3.1 . Note condition (ii) for the Levi-Civita symbol tells us that if any two indices
repeat the symbol vanishes. It also tells us that permutations of the indices leave the value
unchanged. For example for d = 4, ε1123 = 0 and ε1234 = ε2341.

Definition (Oriented Atlas). Let (M,O,A) be a manifold. Then the subatlas A↑ ⊆ A is
called the (positive) oriented atlas if

det

(
∂ym

∂xi

)
> 0,

for all overlapping charts (U, x), (V, y) ∈ A↑.

We can similarly define A↓ to be such that the determinant is negative.

Remark 12.3.2 . It is important to note that you can not always define a oriented atlas. That
is, it’s not necessarily true that the charts (Ui, xi) that satisfy the determinant condition will
cover all of M, and so do not form an atlas. Such manifolds are known as non-orientable
manifolds.
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Claim 12.3.3 . Let (M,O,A↑, g) be an oriented metric manifold. We can define the compo-
nents of the volume form in some chart (U, x) ∈ A↑ as the following

Ω(x)i1...id :=
√

det
(
g(x)ij

)
εi1...id .

Proof. It is clear that the two conditions for the volume form are satisfied as det(g) 6= 0
for Riemannian/pseudo-Riemannian metrics (i.e. there are no 0s in the signature), and the
Levi-Civita symbol is totally antisymmetric. So we just need to show that the result is well
defined, i.e. we need to show the components transform like those of a (0, d)-tensor field. We
have4

Ω(x)i1...id =

√
det

(
g(y)mn

∂ym

∂xi
∂yn

∂xj

)
εi1...id

=
√

det
(
g(y)mn

) ∣∣∣∣det

(
∂ym

∂xi

)∣∣∣∣ εi1...id
=
√

det
(
g(y)mn

)
sgn

(
det

(
∂ym

∂xi

))
det

(
∂ym

∂xi

)
εi1...id .

Now we use the result

det

(
∂ym

∂xi

)
εi1...id =

(
∂ym1

∂xi1
...
∂ymd

∂xid

)
εm1...md .

So we have

Ω(x)i1...id = sgn

(
det

(
∂ym

∂xi

))
·
[(

∂ym1

∂xi1
...
∂ymd

∂xid

)√
det
(
g(y)mn

)
εm1...md

]

= sgn

(
det

(
∂ym

∂xi

))
·
[(

∂ym1

∂xi1
...
∂ymd

∂xid

)
Ω(y)m1...md

]
,

which would be the correct transformation property if we didn’t have the sgn term. So we see
that if we restrict our atlas such that det

(∂ym
∂xi

)
> 0, as stated in the claim, then we simply

get our desired transformation property.

Remark 12.3.4 . The above definition of a volume form is quite a tedious way to define define
a volume form, as you would have to check all the chart transition maps and ensure your
manifold is orientable etc. There is a much nicer way to define a volume form (using the
pull-back map), however in order to introduce it here, we would need to introduce the idea
of a differential form (which is where the volume form derives the latter part of its name).
The interested reader is directed to appendix C of Renteln’s Manifolds, Tensors and Forms
textbook.

4The index notation here can be a bit confusing, but the main thing to keep an eye on is where determinants
appear, because then the indices simply tell us about the positions in matrices and so we can seemingly break
summation convention.
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Definition (Scalar Density). Let (M,O,A↑) be a oriented smooth manifold. We define the
scalar density in chart (U, x) as

ω(x) := Ωi1...idε
i1...id ,

where εi1...id is defined the same as εi1...id .

It follows from the calculations above that scalar densities on metric manifolds satisfy5

ω(y) = det

(
∂x

∂y

)
ω(x).

12.4 Integration On One Chart Domain

Definition (Integration on a Chart Domain). Let (M,O,A↑) be a oriented smooth manifold
and let (U, x) ∈ A↑. We define the integral of f ∈ C∞(M) on the domain U via∫

U
f :=

∫
x(U)

ddα f(x)(α) · ω(x)

(
x−1(α)

)
,

where ω(x) is the scalar density corresponding to the volume form Ω.

Claim 12.4.1 . The above notion of integration is well defined.

Proof. We need to show that the formula doesn’t change form when we change charts. From
the calculations done in this lecture, we have∫

U
f =

∫
y(U)

ddβ

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣f(y)(β) ·
[
(det

(
∂x

∂y

)]−1

ω(y)

(
y−1(β)

)
=

∫
y(U)

ddβ f(y)(β) · ω(y)

(
y−1(β)

)
,

which is our well definition condition. Note we have used the fact that our atlas is positive
orientated to ‘remove’ the absolute value sign.

For the special case of an oriented metric manifold (M,O,A↑, g) our result becomes∫
U
f :=

∫
x(U)

ddα
√

det
(
g(x)ij

)(
x−1(α)

)
f(x)(α).

Notation. To lighten notation, it is common to denote

g := det
(
g(x)ij

)(
x−1(α)

)
,

turning the above expression into∫
U
f :=

∫
x(U)

ddα
√
g f(x)(α).

Remark 12.4.2 . In the above we have assumed we are using a Riemannian manifold, in which
case g > 0. The above formula is adapted to pseudo-Riemannian manifolds with g < 0 by
simply replacing √g →

√
−g. We will see this later when, for example, considering Maxwell’s

action.
5We drop the indices in the determinant to lighten the notation, but they are just the indices used for x

and y.
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12.5 Integration Over The Entire Manifold

We might be tempted at this point to simply say that the integral over the whole manifold
is just given as the sum over the chart domain integrals. That is let {(Ui, xi)} ⊆ A↑ be a
subatlas (i.e. ∪iUi =M) then we might be tempted to say∫

M
f =

∑
i

(∫
xi(Ui)

ddα
√
gf(xi)(α)

)
.

However this suffers from the common problem of over counting. That is, as it is defined, the
contributions from the overlap regions Ui ∩Uj are counted in both the xi(Ui) integral and the
(Uj , xj) integral. We need a way, therefore, to remove this over counting. This problem is
resolved by requiring that the manifold admit a so-called partition of unity.

Roughly speaking, for any finite6 subatlas A′ = {(U1, x1), ..., (UN , xN )} ⊆ A↑ there exists
continuous functions ρi : Ui → R, such that for all p ∈M∑

i

ρi(p) = 1,

where the sum is performed such that p ∈ Ui.7 This accounts exactly for this over counting
and allows us to define the integral over the whole manifold as∫

M
f :=

∑
i

(∫
Ui

ρi · f
)
.

That is, the ρis are defined such that their sum at any point inM equals unity. Clearly this
removes the over counting and just gives one contribution for the overlap region.

Example 12.5.1 . Let dimM = 1 and let it be covered by two charts (U1, x1) and (U2, x2).
Define the ρis to be such that they change linearly across the overlap region. Then we have
something like the below diagram.

U1

M
U2

1 ρ1

ρ2

6Note we require it to finite, as otherwise we would need to check for convergence in order to be able to
take the sum out of the integral below.

7Alternatively you could just say ρi(p) = 0 if p /∈ Ui and let the sum run from i = 1 to i = N .



13 | Relativistic Spacetime

We now start talking about physics. Of course we will use all of the mathematical tools
developed so far and so it is important that the reader understands the content up to this
point fully.

Recall the definition of Newtonian spacetime from Lecture 9 as the quintuple (M,O,A,∇, t)
where (M,O,A) is a 4-dimensional smooth manifold, ∇ is a torsion free connection and an
absolute time t ∈ C∞(M) satisfying dt|p 6= 0 for all p ∈M and ∇dt = 0.

Recall also the definition given at the very start of the course. We have a 4-dimensional
topological manifold with a smooth atlas, (M,O,A), carrying a torsion free connection, ∇,
but now we also require the connection be compatible with a Lorentzian metric, g, and a
so-called time orientation, T . So we need the sextuple (M,O,A,∇, g, T ).

13.1 Time Orientation

The absolute time function in Newtonian spacetime associates to each p ∈M a time. That is,
given any point you can just quote the time of that point unarguably. We used the absolute
time function to define a future directed vector field X as dt : X > 0. Pictorially this is given
by an arrow pointing to the ‘upper side’ of a tangent plane to a constant t surface.

t1

t2

p

X

dt

We don’t have an absolute time function for our relativistic spacetime, and so we need
some other way to define what a future directed vector field is. We know from the tutorials
that a Lorentzian metric structure gives a double cone structure in the tangent space to each
point. The question is, "can we use this double cone structure in a similar way to how we
use the dt surfaces in Newtonian physics to define future/past/spatial directed vector fields?"
The answer is "yes, but not by itself."

Definition (Time Orientation). Let (M,O,A↑, g) be an oriented Lorentzian manifold. Then
a time orientation is given by a smooth vector field T that

(i) does not vanish anywhere, and

96
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(ii) g(T, T ) > 0.1

Proposition 13.1.1. It is the combination of the metric and the time orientation that allows
us to define future/past/spatial directed vector fields in relativistic spacetime.

The ‘proof’ of the above proposition comes from simply breaking down the definition. The
metric structure gives us a double cone structure in the tangent plane to each p ∈ M. We
want to identify one of these cones as the future and the other as the past. We know that a
vector X that satisfies g(X,X)|p > 0 then it lies within either one of the two cones tangent
to p. It doesn’t, however, tell us which cone is lies in, and so we don’t know if it’s future
directed or past directed. We therefore need some method to select which cone is which. This
is exactly what the time orientation does. Condition (i) tells us that it is defined everywhere,
and so we can define the future cone at each point, and condition (ii) tells us that T lies
within the cone (an obvious necessity). We then simply say ‘whichever cone T lies in, that is
the future cone’. The final, but very important, property is that T is a smooth vector field.
This means that the future cones at separate points are smoothly connected. That is, the
selected cone doesn’t suddenly ‘flip’ as you move from point to point.

Tp

Tq

Tp

q

Figure 13.1: Pictorial representation of the relativistic spacetime. The metric g pro-
duces a double cone structure in the tangent plane to each point of the manifold. In order
to differentiate the two cones, a smooth vector field T ∈ ΓTM is introduced in such a
way that, at each point p ∈ M , the vector Tp ∈ T points within one of the two cones
associated to that point. This cone is then identified as the ‘future’ relative to that point.
The smoothness of T (indicated by the shaded region) ensures a smooth transition from
the ‘future’ of one cone to another. Solid lined cones indicate the chosen ‘future’ cones
and dashed the ‘past’ cones.

Remark 13.1.2 . For the Newtonian spacetime picture, it is always possible to find a so-called
stratified atlas, in which all of the dt planes lie horizontally in the charts. For the relativistic

1In our signature which is (+,−,−,−). For the signature (−,+,+,+) the condition would be g(T, T ) < 0.
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picture, this is not true; that is, we can not in general define an atlas such that all the cones
line up. Physically this is not a problem because of course who cares what they look like in
a chart, its the physical things that are important. However it can make calculations harder
and so it is worth noting.

Notation. We shall now simply refer to relativistic spacetime as just spacetime.

Note for Newtonian spacetime a future directed vector only had to point ‘above’ the dt
tangent surface and no restriction was placed on its steepness (i.e. the angle between it and
the dt plane). Recall that particles are defined to travel along future-directed worldlines.
Intuitively, this corresponds to the idea that there is no bound to the speed2 of a particle,
provided it is still future directed. This is obviously in contrast to the idea from special
relativity that no massive object can travel at the speed of light (or faster).

In the spacetime picture, though, we require that the future directed lie within the cone.
They are then bounded by the surface of the cone (which, as we will define, correspond to
so-called null vectors). If we then identified the surface of this cone with the worldlines of
light, this would correspond to exactly the condition that massive particles are bound by the
speed of light.3

Let’s make this more precise.

Postulate 1. The worldline γ of a massive particle satisfies

(i) gγ(λ)(vγ,γ(λ), vγ,γ(λ)) > 0, and

(ii) gγ(λ)(T, vγ,γ(λ)) > 0.

Postulate 2. The worldline γ of a massless particle satisfies

(i) gγ(λ)(vγ,γ(λ), vγ,γ(λ)) = 0, and

(ii) gγ(λ)(T, vγ,γ(λ)) > 0.

Postulate 1 tells us that (i) a massive particle’s worldline lies inside the cone structure,
and (ii) it is future-directed. The only difference with postulate 2 is that the worldline of a
massless particle lines on the surface of the future cone. It is at this point that we can identify
the surface of the cone as the trajectory of light, as light is massless particle.

Remark 13.1.3 . The wording above is a bit sloppy. The trajectory of the light is the worldline,
which is defined on the manifold. The surfaces of the light cones live in the tangent spaces.
It is therefore none sense to identify the two. What we mean by identify is that the velocity
vectors to the worldline of light lie on the cone, which is exactly what condition (i) says.

Remark 13.1.4 . Note in Newtonian mechanics, we can’t not talk about massless particles and
therefore we can’t define something akin to postulate 2.

2Note we don’t have a metric and so can’t actually define a speed here.
3Again we should be careful saying speed here because speed is relative in relativity. We simply mean that

there is no frame of reference where the speed of a massive particle exceeds the speed of light.
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p

vγ,p

q

vγ,q

γ γ

p

vγ,p

q

vγ,q

Figure 13.2: World lines in spacetime of a massive particle (left) and a massless particle
(right). It is important to remember that the cones and velocity vectors live in the tangent
space to the point, not on the manifold itself, which the above picture might lead you to
believe.

Remark 13.1.5 . Note we required that the time orientation be a non-vanishing smooth vector
field. We have already seen examples of topological manifolds that do not support such things,
namely the sphere. We are saved here by the fact that we can also not define a Lorentzian
metric on the sphere, and so we can’t even begin to try and define a time orientation.

Example 13.1.6 . Consider the example spacetime given by M = R4, O = Ost and where
the atlas contains the chart (R4,1R4). Let the metric in this chart be given by g(x)ij = ηij
and the time orientation be T(x) = (1, 0, 0, 0). From the metric components we get vanishing
Christoffel symbols Γkij = 0 everywhere, and from which, by using the Levi-Civita connection,
it follows that the Riemann curvature vanishes. This spacetime is therefore flat. This is the
spacetime of special relativity and is known as Minkowski spacetime (or just Minkowski
space). In the chart given, the representations of the light cones all stand up-right, i.e. they
make a 45 degree angle to the horizontal plane.

13.2 Observers

Definition (Observer). An observer on a 4-dimensional spacetime (M,O,A↑, g, T ) is a
worldline γ of a massive particle together with a choice of basis {e0(λ), ..., e3(λ)} in each
Tγ(λ)M, with

(i) g(ea, eb) = ηab, and

(ii) e0(λ) = vγ,γ(λ),

where4

η00 = 1, η11 = η22 = η33 = −1, and ηab = 0 ∀a 6= b.

Notation. We will denote observers by (γ, e) where e stands for the whole basis selection.
4As normal this is just in our signature. If we used (−,+,+,+) the definiton of ηab changes accordingly.
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Condition (i) is the condition that the basis in each tangent space be orthonormal (in the
Lorentzian sense). The significance of condition (ii) shall be clarified soon, but it is the idea
that the observer does not move in space relative to themselves.

There is an alternative, more precise, definition of an observer, which we give below.

Definition (Observer (Frame Bundle)). An observer is a smooth section in the frame bundle
LM overM.

We do not need to go into great detail here about what the frame bundle is, but the basic
idea is that the fibres are the space of bases. That is, an element in the fibre is a quadruple of
elements corresponding to a basis for that p ∈M. We take a section so that we have a basis
at every point along the worldline and finally require the section to be smooth, so that the
bases smoothly transition from one to another as you move along γ; that is you don’t want
left to suddenly become down.

p

e0(λ1)

e1(λ1)

e2(λ1)

q

e0(λ2)
e2(λ2)

e1(λ2)

γ

Figure 13.3: Pictorial representation of an observer, (γ, e). The curve γ is that of a
massive particle, and for each point p ∈ γ, the observer has a basis for TpM, such that
e0 is the velocity at that point. The bases at different points are related by the smooth
curve in the frame bundle — where smoothness ensures a continuous transition from the
one at p to the one at q.

Postulate 3. A clock carried by a specific observer (γ, e) will measure a time τ , known as
the proper/eigen-time, between two events γ(λ1) and γ(λ2) as

τ :=

∫ λ2

λ1

dλ
√
g
(
vγ,γ(λ), vγ,γ(λ)

)
.

It the combination of this with condition (ii) in the definition of an observer, that tells us
that they simply follow time as they know it. As the emphasis suggests, this time is defined
relative to them. What we are highlighting here is the fact that time is a derived notion on
our spacetime. Indeed, a different observer could well disagree with the time and there would
be no way to determine who is correct in an absolute way, unlike with Newtonian spacetime,
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where the absolute time function would give us our answer. This is the idea that time is
relative and the simultaneity is ill-defined.

Remark 13.2.1 . Note it also only makes sense for an observer to measure the time between
events they have passed through. This is a subtle point but actually has far reaching impact,
for example when it comes to talking about things like infinite redshift surfaces of black holes.

Example 13.2.2 . Consider two observers on Minkowski spacetime. In the chart (R4,1R4) let
these observers be parameterised as

γ(x)(λ) = (λ, 0, 0, 0)

δ(x)(λ) =

{
(λ, αλ, 0, 0) λ ≤ 1

2(
λ, (1− λ)α, 0, 0

)
λ > 1

2

γ δ

for λ ∈ (0, 1) and α a constant between 0 and 1. We calculate

τγ =

∫ 1

0
dλ
√
g(x)ij γ̇

i
(x)γ̇

j
(x) =

∫ 1

0
dλ
√

1 = 1,

and

τδ =

∫ 1
2

0
dλ
√

1− α2 +

∫ 1

1
2

dλ
√

1− (−α)2 =
√

1− α2.

So the δ observer measures a shorter time. This is the twin paradox and time dilation, where
α→ 1 corresponds to v → c.

Postulate 4. Let (γ, e) be an observer and δ be a massive particle worldline, that is param-
eterised such that g(vδ,δ(λ), vδ,δ(λ)) = 1 everywhere along δ.5 Suppose the observer and the
particle meet at some p ∈ M, i.e. γ(τ1) = p = δ(τ2). This observer measures the 3-velocity
(or spatial velocity) of this particle as

uδ(τ2) :=
(
εα : vδ,δ(τ2)

)
eα, α = 1, 2, 3,

where εα is the αth component of the so-called dual basis6 of e.

We see the basis dependence clearly in the above postulate and so we know that a different
observer, that also meets δ at p ∈ M, could get a different measurement for the 3-velocity
of the massive particle. This is exactly the idea that 3-velocity is a relative concept. Note
that the 4-velocity vδ,δ(τ2) is objective; it is only the 3-velocity (which we can think of as a
‘projection’ of the 4-velocity into the spatial plane of the observer) that is ill-defined.

5This corresponds to normalising the worldlines to follow the clock that the observer carries. We choose
to do this because it makes the following definitions easier.

6See Dr. Schuller’s Lectures on the Geometrical Anatomy of Theoretical Physics course for more details.
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γ

δ

e

v

u

TpM

13.3 Role Of Lorentz Transformations

Lorentz transformations emerge as follows: let (γ, e) and (γ̃, ẽ) be observers with γ(0) = γ̃(0).
Now {e0, ..., e3} and {ẽ0, ..., ẽ3} are both bases for the tangent space Tγ(0)M. Thus we can
express the latter basis in terms of the former one. That is,

ẽa = Λbaeb,

where Λ ∈ GL(4).7 From the definition of an observer we have

ηab = g(ẽa, ẽb)

= g
(
Λmaem,Λ

n
ben
)

= ΛmaΛ
n
bg(em, en)

∴ ηab = ΛmaΛ
n
bηmn,

which tells us that the Λs are elements of the Lorentz transformations, Λ ∈ O(1, 3).
So we see that the Lorentz transformations relate the frames of two observes at the point

that they meet. It is completely meaningless say ‘we use a Lorentz transformation to relate
a frame of one observer at p ∈ M to another observer at q 6= p ∈ M’. As such, Lorentz
transformations act on a single tangent space to the manifold, and do not, by any stretch of
the imagination, act on the spacetime. That is writing things like

x̃µ = Λµνx
ν

is utter nonsense. It is true in special relativity, where the spacetime is flat, that we can think
of extending the tangent space over the whole manifold, and then you could say ‘ah well now it
acts on all the tangent spaces and so now we can think of it as acting on the spacetime.’ This
just brings us back to Remark 5.5.1, where we said that by doing so you restrict yourselves
firstly to linear transformations between frames and then also to the specific case of Lorentz
transformations. Physically this is not a good idea, because the objective world does not care
which frames we use and therefore we should be able to transform to any frame and study
the physics.

7For the unfamiliar reader that is the group of 4x4 inevitable matrices, known as the 4-dimensional general
linear group. See any group theory course for more details.



14 | Matter

There are two types of (theoretical1) matter: point matter and field matter. Examples of
each are a massive point particle and the electromagnetic field, respectively. As we will see,
it is this field matter that generates the curvature of spacetime, and therefore, from general
relativity’s point of view, field matter is the more fundamental type.

14.1 Point Matter

Postulate 1 and Postulate 2 already constrain the possible particle worldlines for massive and
massless particles. However, it does not tell us what their precise law of motion, possibly in
the presence of forces, is.

14.1.1 Without External Forces

We know that the equations of motion for a system can be obtained by varying a suitable
action and obtaining the Euler-Lagrange equations. Below we simply provide the actions
for massive and massless particles, however we will see later that they actually arise as a
consequence of Einstein’s field equations.

Smassive[γ] := m

∫
dλ
√
gγ(λ)

(
vγ,γ(λ), vγ,γ(λ)

)
,

Smassless[γ, µ] :=

∫
dλµ gγ(λ)

(
vγ,γ(λ), vγ,γ(λ)

)
,

where µ is a Lagrange multiplier, which is introduced so that when you vary w.r.t. it you get
gγ(λ)

(
vγ,γ(λ), vγ,γ(λ)

)
= 0, which is condition (i) in Postulate 2. Of course we also impose the

condition gγ(λ)

(
T, vγ,γ(λ)

)
> 0 on our actions.

It is a fair challenge to ask ‘why are we starting from actions instead of just starting from
the Euler-Lagrange equations?’ The answer is simply the fact that we can add different actions
together easily and then find the corresponding e.o.m. for that composite system. That is,
composite systems have an action which is given by the sum of the constituent actions, possibly
including interaction terms, and we then vary this composite action to obtain the complete
e.o.m.

1This is really just a academic distinction, as it is often useful to think about these two separate kinds of
matter and treat them accordingly. Of course in the real world we just have matter.
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14.1.2 Presence of External Forces

Roughly speaking, in special relativity, the reaction of a particle to a force is not instantaneous,
but has some time delay. This time delay is explained by the fact that forces are mediated by
fields and if the particle is to react to the field it must be coupled. So what we really mean
by ‘presence of external forces’ is ‘presence of fields to which the particles couple’.

The prime example for action of a particle coupling to an external field is that of a massive
charged particle coupling to the electromagnetic field,

S[g;A] :=

∫
dλ
[
m
√
gγ(λ)

(
vγ,γ(λ), vγ,γ(λ)

)
+ q
(
A : vγ,γ(λ)

)]
,

where A ∈ ΓTM is the electromagnetic potential onM and q ∈ R is the charge of the particle.

Notation. We have used a semi-colon in the arguments of the action to indicate that we treat
A as a fixed quantity, and so we do not vary w.r.t. it.

Exercise

Let Lint := q
(
A : vγ,γ(λ)

)
. Use a chart (U, x) to show that the Euler-Lagrange equations

of the above action are
m
(
∇vγvγ

)a
= −qF abγ̇b,

where F ab := gac(Ac,b −Ab,c).
Hint: If you get stuck, this one is done on the videos.

The result of the above exercise is the Lorentz force law on a charged particle in the
electromagnetic field. Note also that the action given above is reparameterisation (λ→ λ′(λ))
invariant, as it must be if it is to be the action for the Lorentz force law.

14.2 Field Matter

Definition (Classical Field Matter). Classical2 field matter is any tensor field on spacetime
whose equations of motion derive from an action.

This definition is of course quite unhelpful, but we use it because its hard to give another
definition that does no over or understate what field matter is. We rather see what field
matter is by considering Maxwell’s action.3

SMaxwell[A; g] :=
1

4

∫
M
dx4√−gFabFcdgacgbd,

where, for the time being, we have assume the metric to be fixed.

Remark 14.2.1 . Note that we use
√
−g not just √g. This is because we are looking at a

Lorentzian metric which has negative determinant.
2As in non-quantum.
3In the definition below we have assumed there is a chart that covers the whole spacetime. If this is not

the case, the definition holds, but we just need to use the ideas discussed at the end of lecture 12.
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Example 14.2.2 . If we take our spacetime to be Minkowski spacetime and use the chart
(R4, 1R4), we have g = −1, gab = ηab and so the Maxwell action just becomes

SMink
Maxwell[A; g] =

1

4

∫
R4

dx4FabF
ab,

which may be familiar to the reader. Note, however, that it only takes this form in this chart.
If we chose to use polar coordinates, we would not have g = −1 nor gab = ηab.

The Euler-Lagrange equations (in a chart) for a field action are given by

0 =
∂L
∂Am

− ∂

∂xs

(
∂L

∂∂sAm

)
+

∂

∂xt
∂

∂xs

(
∂2L

∂∂t∂sAm

)
− ...,

where the trend continues with alternating sign. Calculating the Euler-Lagrange equations
for the Maxwell action gives the inhomogeneous Maxwell equations

(∇aF )ab = 0.

If we had considered the action including a coupling to a current j ∈ ΓTM,

S[A; g, j] =
1

4

∫
M
dx4√−g

(
FabFcdg

acgbd +A : j
)
,

the Euler-Lagrange equations become

(∇aF )ab = jb.

The remaining two Maxwell equations can be obtained via(
∇[aF

)
bc]

= 0.

Remark 14.2.3 . There is a much nicer way (in my opinion) to write Maxwell’s equations,
but it involves properly introducing the exterior derivative, d, and the Hodge star, ?. The
formulas are

dF = 0 and d ? F = ?j,

where F = dA is the Faraday tensor and J is the current density. The interested reader
is directed to Example 3.14 and Exercise 3.28 of Renteln’s Manifolds, Tensors, and Forms
textbook (or many other textbooks which will cover it).

There are other well liked (by textbooks) examples, including the Klein-Gordan action

SKG[φ] :=

∫
M
dφ
√
−g
[
gab∂aφ∂bφ−m2φ2

]
,

where φ ∈ C∞(M), is a scalar field on the spacetime.
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14.3 Energy-Momentum Tensor Of Matter Fields

So far we have always assumed that we are given the Lorentzian metric for our spacetime.
The obvious question is ‘which metric?’ If we are to describe a physical system, e.g. the
universe, obviously we want a metric that will give us precisely these physical results. We
therefore want to obtain some action for the metric tensor field itself, which we shall denote
Sgrav[g]. This action will be added to any matter action Smatter[...], in order to describe the
total system.

Example 14.3.1 . If we take the Maxwell action we have

Stotal[g,A] = Sgrav[g] + SMaxwell[A, g],

where the metric is no longer taken as fixed in the Maxwell action, i.e. we use a comma not
a semi-colon.

Of course, varying the total action w.r.t. the arguments of the matter action (A in the
above example) will just give us the matter e.o.m (Maxwell’s equations for the example).
However, now varying w.r.t. g will give a contribution from both Sgrav and Smatter,

Gab = 8πGNTab,

where Gab is the contribution from Sgrav, Tab is the contribution from Smatter, and where we
have included the factor 8πGN , where GN is Newton’s constant, for convention. This is the
so-called Einstein equation.

Once we have fixed Sgrav we will of course always obtain the same Gab, but the Tab depends
on which matter action we are using. We can ensure that our e.o.m. are always satisfy the
Einstein equation by introducing the following definition.

Definition (Energy-Momentum Tensor). Let Smatter[..., g] be any matter action that couples
to the metric. Then we define the components of the energy-momentum tensor via

T ab :=
−2√
−g

[
∂Lmatter

∂gab
− ∂

∂xs

(
∂Lmatter

∂∂sgab

)
+

∂

∂xt
∂

∂xs

(
∂2Lmatter

∂∂t∂sgab

)
− ...

]
,

where the terms continue with alternating sign.

Remark 14.3.2 . In the above definition we said ‘that couples to the metric’. This is true for
all of the classical matter fields of the standard model, and so we will always have this in this
course.

Remark 14.3.3 . The minus sign in that above definition is included to ensure T (ε0, ε0) > 0,
which tells us that energy is positive.

Example 14.3.4 . For the Maxwell action, the energy-momentum tensor is

Tab = FamFbng
mn − 1

4
FmnF

mngab.



15 | Einstein Gravity

Remark 15.0.1 . In this lecture (and the proceeding ones) we will use a lot of indices. This
obviously implies that we are using charts and so our results could turn out to be physically
nonsense in the end. This remark claims that the results, unless otherwise specified, are
indeed chart independent, and we simply use indices to make it notationally clearer what
we’re doing.

Recall that in lecture 9, we were able to reformulate Poisson’s equation, ∇2φ = 4πGNρ,
in terms of the curvature of Newtonian spacetime, namely as Ric00 = 4πGNρ. This prompted
Einstein to postulate that the relativistic field equations for the Lorentzian metric g of space-
time1 as

Ricab = 8πGNTab.

However, this equation suffers from a problem: it can be shown2 that (∇aT )ab = 0. This
would imply that (∇aRic)ab = 0, which is not true generically. Einstein tried to argue this
problem away, but it turns out that these equations are fundamentally wrong and cannot be
upheld, and we to obtain a new set of field equations.

15.1 Hilbert

Hilbert was an variation principle specialist and had the brilliant idea to say "The right-hand
side of the gravitational field equations come from an action, so why don’t we try and obtain
the left-hand side from an action too?" He decided to work through the simplest actions3 he
could until he obtained one that worked. His final result was the following:

SH [g] :=

∫
M

√
−g R :=

∫
M

√
−gRicabgab.

The aim is to vary this action w.r.t. gab and obtain some tensor, which we denote −Gab.4
The obvious next step is to do this variation and find out what −Gab is.

1Recall that when we say spacetime we mean relativistic spacetime.
2See my notes for Dr. Shiraz Minwalla’s String theory course for an outline of the proof.
3That is he asked what combination of objects will give a scalar field.
4The minus sign is just a convention choice.
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15.2 Variation of SH

We have

δSH [g] =

∫
M

[
δ
√
−g · Ricab · gab +

√
−g · δRicab · gab +

√
−g · Ricab · δgab

]
.

Let’s consider this term by term.
First let’s consider δg, from g := det g = exp

(
Tr(ln g)

)
, we have

δg = −g · g
abδgab

2
√
−g

= −1

2

√
−g · gab · δgab

Next, let’s look at δgab. We know gacgcb = δab , and so we have

δgac · gcb + gac · δgcb = 0 =⇒ δgab = −gam · gbn · δgmn,

where we have relabelled the indices on the latter equation.
Finally, we have to work out δRicab. This one is a little more tricky, and involves us

making some clever steps. We start of by considering normal coordinates,5 giving us

δRicab = δ
(
Γmam,b

)
− δ
(
Γmab,m

)
= (δΓmam

)
,b
− (δΓmab

)
,m
.

This seems like an awful idea because the results depend on the fact that we’re in normal
coordinates. However we now use a remarkably clever trick. Recall that Γs are not tensor
components because they have a term in their transformation given by second derivatives.
We now note that this term does not depend on the Γs themselves, and therefore if we take
the difference of two Γs this term will vanish in the transformation. That is

Γk(x)ij − Γ̃k(x)ij

transform like the components of a tensor. We then note that the derivative essentially
compares two Γs, and so conclude that the the derivatives of the Γs are indeed (1, 2)-tensor
components. This is good, but we then run into the problem that we can’t just take the
derivative of a tensor. This problem is solved quite easily by the fact that we are considering
normal coordinates and so the covariant derivative and the partial derivative coincide (that
is the Γs vanish in normal coordinates). So we have

√
−g · gab · δRicab =

√
−g · gab ·

[
(δΓmam

)
;b
− (δΓmab

)
;m

]
=
√
−g ·

[
(gabδΓmam

)
;b
− (gabδΓmab

)
;m

]
=:
√
−g
[
Ab;b −Bm

;m

]
,

where we have defined Ab := gabδΓmam and similarly for Bb we have used the metric com-
patibility condition (as spacetime is equipped with the Levi-Civita connection) to ‘move gab

inside the covariant derivative’. Next we have
√
−g,b = −1

2

√
−g · gac · gac,b,

5That is a local flat space, so the Γs vanish, but their derivatives need not.
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which, using normal coordinates again along with the metric compatibility condition, gives
us (√

−gA
)b
,b

=
√
−g
[
− 1

2
gac · gac,b ·Ab +Ab;b

]
=
√
−gAb;b.

So we finally arrive at

√
−g · gab · δRicab =

(√
−gA

)b
,b
−
(√
−gB

)b
,b
.

Collecting terms, we have

δSH [g] =

∫
M

[
1

2

√
−ggcd(δgcd)gabRicab −

√
−ggacgbdδgcdRicab +

(√
−gAb

)
,b
−
(√
−gBb

)
,b

]
.

We now notice that the last two terms are volume integrals over divergences and so, by Stoke’s
law, are surface terms. These terms will therefore not contribute to the equations of motion,
which is what we’re interested in, and so we can essentially just drop them. This leaves us
finally with

0 = δSH =

∫
M

√
−gδgab

[
1

2
gabR− Ricab

]
,

where we have used R := gabRicab and Riccd := gacgbdRicab and then relabelled the indices.
This must hold for an arbitrary variation δgab, and so we conclude

Gab = Ricab − 1

2
gabR.

This expression is known as the (components of the) Einstein curvature. They are the field
equations for the vacuum spacetime, i.e. one with no matter. If we include matter into our
spacetime, our action changes in accordance with the previous lecture, and we obtain6

Gab = Ricab −
1

2
gabR = 8πGNTab.

These are known as the Einstein equations, as Einstein also arrived at this result using more
physical arguments. As such the Hilbert action is often called the Einstein-Hilbert action and
is denoted

SEH [g] =

∫
M

√
−gR.

Remark 15.2.1 . With the remark made at the start of this lecture in mind, we have a clear
way to distinguish between the Riemann curvature, the Ricci curvature and the Ricci scalar,
namely the number of indices. We shall therefore write the Einstein equations simply as

Gab = Rab − 1

2
gabR = 8πGNT

ab.

We do this both for notational brevity, but also because this is how it appears in basically all
textbooks.

6Note we have moved the indices back down here. It is annoying common to just move the indices in
equations up and down like this, however you should be careful when doing this as in order to do it the metric
components have been used twice.
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15.3 Solution Of The (∇aT )ab = 0 Issue

Recall the Bianchi identity in components7

Rab[mn;`] = Rabmn;` +Rab`m;n +Rabn`;m = 0.

If we then use the metric compatible condition we obtain the so-called contracted Bianchi
identity

Rab[mn;`] = Rabmn;` +Rab`m;n +Rabn`;m = 0.

Further contraction (i.e. using the metric components to set indices equal to each other) can
be used to give8

R`m;` =
1

2
R;m,

and so we get
Gab;a := (∇aG)ab = 0,

which resolves our problem.

15.4 Variations of The Field Equations

Firstly let’s choose units such that GN = 8π, so the factor in Einstein’s equations becomes 1,
so we have

Rab −
1

2
gabR = Tab.

We now want to manipulate this a little to express it in different ways.

15.4.1 Ricci Scalar Expression

First consider contracting with gab. This gives

gabTab = gabRab −
1

2
gabgabR

T = R− 2R

T = −R,

where we have used gabgab = δaa = dimM = 4, and where we have defined T := gabTab.
Substituting this back into the Einstein equations, we get

Rab = Tab −
1

2
gabT =: T̂ab.

So we have Rab = T̂ab, which is of the same form as what Einstein proposed right at the
start of this lecture, the only difference being we need to use the modified energy-momentum
tensor.

7Technically there is a 3! missing here, but the right-hand side vanishes so it’s not important.
8See tutorial.



LECTURE 15. EINSTEIN GRAVITY 111

15.4.2 Cosmological Constant

We could modify the Einstein-Hilbert action to include some constant term Λ, known as the
cosmological constant. That is

SEH [g] =

∫
M

√
−g(R+ 2Λ).

You might ask why we would do such a thing, and the answer is to do with talking about
an expanding universe. Einstein initially included it as a negative value in order to ensure the
universe was static (i.e. not expanding). Hubble then showed that the universe was indeed
expanding and so we could have Λ = 0, which prompted Einstein to call this his ‘greatest
blunder’. It now turns out that we know the universe is not only expanding, but it is also
accelerating in its expansion and so we require Λ > 0.

The real question is, though, what on Earth is the cosmological constant? Well, if we
think of

∫
M
√
−gR as being gravity, it appears to us that Λ is some matter contribution to

the action that is always there. That is it has a contribution to the field equations of the form
Λgab.

This is rather remarkable though, as Λ is a constant and gab 6= 0 everywhere9 and so this
matter contribution takes the same value over the entirety of the universe! Note it also does
not couple to any fields. This is what people refer to as dark energy.

The next question is: what causes dark energy? The answer is nobody knows.
Our observations tell us that, although Λ 6= 0, it is very small. This is what troubles

us. We need something that exists throughout the whole universe in a constant manner, but
that also doesn’t contribute much energy to the universe system. For an idea of how bad this
problem is, consider the following proposal.

It was suggested that vacuum fluctuations of quantum field theories could be the root of
dark energy. However, the calculation for the contribution to the energy from QCD fluctua-
tions alone gave a value for Λ that was 120 orders of magnitude too big!

9Well everywhere it’s defined at least. Who knows what values it takes at places like the singularity.



16 | Optical Geometry I

Remark 16.0.1 . This lecture is given by Dr. Werner, and he decides to use the opposite
signature to Dr. Schuller, namely he uses (−,+,+,+). I shall change to this signature too as
Dr. Schuller changes to it anyways in lecture 20 and it is also my preferred signature.

Notation. Dr. Werner uses the notation that Greek indices represent spacetime components
(i.e. µ = 0, 1, 2, 3), whereas Latin indices represent spatial components (i.e. i = 1, 2, 3). We
shall use the opposite convention here as that is what we have been using throughout these
notes.

We want to look at gravitational lensing, which is the bending of light in space. Historically,
gravitational lensing played a really important part in the field of general relativity, as it was
one of the first proposed predictions of the theory. In order to study gravitational lensing we
shall first return to Fermat’s principle and try and express it in the context of GR.

16.1 Fermat’s Principle

Classically, Fermat’s principle is the statement that light will follow a path that minimises its
time. That is,

0 = δ

∫
γ
dt = δ

∫
γ

1

v
d` = δ

∫
γ

n

c
d`.

There is a problem with trying to do this in GR, though; light rays follow null geodesics and
so have zero spacetime length. That is g(vγ,γ(λ), vγ,γ(λ)) = 0 for all γ that represent the path
of a light ray.

For us to proceed here, we are going to assume that our spacetime is so-called stationary.

Definition (Stationary Spacetime). A spacetime (M,O,A, g, T ) is called stationary if it
admits a Killing vector field K such that g(K,K) < 0.1

Claim 16.1.1 . A stationary spacetime is one where we can find a chart such that the compo-
nents of the metric do not depend on time.

Proof. Recall a vector field is Killing if LKg = 0. The exercise at the end of lecture 11 shows
that in a chart this condition reads

T cgab,c + gcbT
c
,a + gcaT

c
,b = 0.

1Technically all we require is that the spacetime has an asymptotically flat region and that the Killing
vector field satisfies g(K,K) < 0 in this region. This distinction does carry forward into some of the next
expressions, however we shall ignore it in these notes as the general idea holds.
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Now imagine we pick a chart such that T = δa0∂a = ∂0, then the second two terms vanish and
we are simply left with

gab,0 = 0,

which is the statement that the metric components are time-independent in this chart.

In the chart described above, a general stationary spacetime is one who’s metric is of the
form

g = −dt⊗ dt+ ωµ
(
dt⊗ dxµ + dxµ ⊗ dt

)
+ hµνdx

µ ⊗ dxν ,

where hµν = diag(+,+,+), and where both hµν and ωµ are functions of the xs only, i.e.
hµν,0 = 0 = ωµ,0.

Definition (Static Spacetime). A spacetime (M,O,A, g, T ) is called static if it is stationary
and hypersurface-orthogonal, which essentially means ωµ = 0 for all µ ∈ {1, 2, 3}.

Remark 16.1.2 . The ωis have the nice geometrical interpretation of being (the spatial part) of
a twisting vector, which corresponds to a rotation of the spacetime. So the difference between
a stationary and static spacetime can be thought of as allowing or not rotation.

I will finish typing up this lecture, and the next three later. I have typed up all of Dr.
Schuller’s lectures though. These lectures are very well taught (I just decided to finish Dr.
Schuller’s stuff first), so please watch them if you haven’t already.

1. Fermat’s principle GR — it is the variation of the arrival time that vanishes, not
the total time.

2. Finsler-Randers Geometry

3. Optical metrics

4. Schwarzchild

5. Gaussian Curvature



17 | Optical Geometry II

1. Geodesic Deviation

2. Show that for Schwarzschild spacetime that geodesics diverge locally everywhere.

3. If that is true, how do we get multiple images of stars? Must be some global
property converging them again.

4. Guass-Bonnet
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19 | The Canonical Formulation of GR
II
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20 | Cosmology: The Early Epoch

Cosmology is the study of the spacetime of the entire universe. As we have seen, Einstein’s
equations are highly non-linear and so are hard to solve.1 Nevertheless, they do allow us to
ask the scientific question of biggest possible scope: "How did the universe evolve?"

Now it seems like an incredibly bold task to try and solve Einstein’s equations for the entire
universe, when we have just said they are already very difficult to solve on much smaller scales
with restrictive conditions. In fact, solving Einstein’s equations for the entire universe can be
thought of as the ‘most difficult’ problem because our energy-momentum tensor must include
all the matter in the universe!

In order to solve the problem we are going to insert some ideas and then use these recklessly,
by which we mean that it is not a priori clear whether this is a valid procedure. We will
continue to comment on this as we go along.

Remark 20.0.1 . As mentioned in Remark 16.0.1, we shall now use the signature to (−,+,+,+)
so that when we restrict ourselves to the spatial part of the universe (which we will do next)
we don’t have to carry minus signs around.

20.1 Assumption of Spatial Homogeneity & Isotropy at Large Scale

The idea is to assume that if we were to ‘zoom out’ far enough and look at the universe on the
large scale, the small scale ‘untidiness’ would disappear and we would obtain a homogeneous
(same at all places) and isotropic (same in all directions) picture.

Remark 20.1.1 . Note we have said spatial homogeneity and isotropy. It would be a bit much
to assume that the universe is also homogeneous and isotropic in time. However, relativity is
based around the idea that space and time are essentially indistinguishable (in the sense that
they are two parts of the same thing) and so we need to clarify what we mean by spatial and
temporal. We shall return to this.

These assumptions allow us to make a symmetric ansatz for the metric of the universe
spacetime, and in doing so we massively simplify Einstein’s equations. It is important to note
however that doing this is very reckless. We are not guaranteed that making such an ansatz a
priori will give us the same solution we would obtain from first solving the problem and then
imposing the ansatz. However, this is the method used in mainstream cosmology and so we
will adopt it here.

1Indeed no one has been able to write down a general solution.

117



LECTURE 20. COSMOLOGY: THE EARLY EPOCH 118

Remark 20.1.2 . Note just because an idea is adopted by mainstream research, it need not be
true. This is just a remark to highlight the point that when doing research it is not always
a bad idea to disagree with mainstream ideas (provided you have evidence to support your
claims).

Recalling the discussion at the end of lecture 11, we can formulate the above symmetry
assumptions more precisely. We say that our spacetime admits 6 spatial2 Killing vector fields,
which we denote J1, J2, J3, P1, P2 and P3. The Jas correspond to the rotational symmetries
(i.e. the isotropy condition) and the Pas correspond to the translation symmetries (i.e. the
homogeneity condition). They satisfy the following relations

[Ja, Jb] =
3∑
c=1

εabcJc, [Pa, Pb] = 0, and [Ja, Pb] =
3∑
c=1

εabcJc.

Remark 20.1.3 . Note this is a condition on the whole spacetime, not just on some kind of
spatial slice (whatever that would mean). It is only by providing these 6 Killing vector fields
that we can work out what we meant by ‘spatial’ homogeneity and isotropy above. That is
we look at the ‘planes’ spanned by these 6 Killing vector fields and identify them as spatial
planes and the vector fields orthogonal to them as the temporal flow.

It is important to be careful with taking this idea too far. We know that moving observes
have ‘tilted time-axis’ relative to each other, and so we could be lead to think that their spatial
planes, and therefore the Killing vectors, also tilt. Clearly this is unphysical (a symmetry of
a metric is independent of an observer noticing it) and so cannot be the case.

Fortunately, for 6 (R-linearly independent) Killing vector fields there is a short cut3 to
understand how a metric with such symmetries looks like.

Lemma 20.1.4. On a d-dimensional manifold the maximal number of R-linearly independent
Killing vector fields is d(d + 1)/2, which is equal to the number of independent component
functions of a metric in d-dimensions.

Proof. (By example)4 Recall the Killing vector condition can be expressed as

g
(
∇XK,Y

)
+ g
(
X,∇YK

)
= 0.

If we pick a chart where we simply have X = ∂a and Y = ∂b (that is they point along one of
the basis directions each) then this condition becomes5

Kb;a +Ka;b = 0.

Now recall that the definition of the Riemann tensor (in the absence of Torsion) can be written
as

Riemd
cabKd = ∇b∇aKc −∇a∇bKc =: Kc;a;b −Kc;b;a.

2That is g(K,K) > 0 in our updated signature.
3Relative to having to introduce a coordinate chart and work it out from that.
4A complete proof is not too much different and can be found in Weinberg’s Gravitation and Cosmology:

Principles and Applications of the General Theory of Relativity, in Part 4, Chapter 13, Section 1.
5Try showing this as an additional exercise.
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Putting this into the Bianchi identity

Riemd
[abc] = 0

gives us
(Ka;b −Kb;a);c + (Kb;c −Kc;b);a + (Kc;a −Ka;c);b = 0,

which using the charted Killing condition gives us

Ka;b;c = Kc;b;a −Kc;a;b = −RdcabKd.

Now comes the ‘by example’ part. Consider a d-dimensional flat space, then the Riemann
tensor components all vanish and we can pick a chart such that the Γs vanish, and so the
covariant derivative simply becomes the partial derivative. We therefore have

Ka,b,c = 0, ⇐⇒ Ka = βabx
b + αa,

for constants βab and αa.
We now just need to impose the linearly independent condition. Antisymmetry tells us

that βab = −βba and so there are d(d − 1)/2 independent βab components and clearly there
are d independent αa components. Adding these together gives

d(d− 1)

2
+ d =

d(d+ 1)

2
.

A space with the maximal number of Killing vector fields is called a maximal space and
the metric is said to be maximally symmetric.

From the above lemma (and the fact that 3(3 + 1)/2 = 6) we see that the spacial metric
induced from the spacetime metric on the spatial slices spanned by the Killing vector fields
is the metric of a maximally symmetric 3-space.

Definition (Sectional Curvature). Given a Riemannian manifold (M,O,A, g) and two lin-
early independent tangent vectors to the same pointX,Y ∈ TpM, we can define the sectional
curvature as

κ(X,Y ) :=
g
(
Riem(·, Y,X, Y ), X

)
g(X,X)g(Y, Y )−

[
g(X,Y )

]2 ,
where Riem(·, Y,X, Y ) = ∇X∇Y Y −∇Y∇XY ∈ TpM.

The sectional curvature can be seen geometrically as the product of the curvatures at a
point. For example, both the curvature directions a sphere ‘go inwards’ and so they have the
same sign and therefore κ > 0. Alternatively, the throat of a wormhole has κ < 0.

Remark 20.1.5 . Note that the sectional curvature actually only depends on the 2-plane σp ⊂
TpM spanned by X and Y . For a d > 2 dimensional spaces, the different 2-planes tell us
about the product of the different curvatures.

Definition (Constant (Sectional) Curvature). A space is said to have constant (sectional)
curvature if κ takes the same value at every point onM and every 2-plane.
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Proposition 20.1.6. Riemannian manifolds with constant curvature can be of one of three
geometries:

(i) flat κ = 0,

(ii) spherical κ > 0, or

(iii) hyperbolic κ < 0.

Such spaces are called space forms.

For a spacetime with constant curvature we have

Riemαβρδ = κ
(
γαργβδ − γαδγβρ

)
,

where γαβ is the spatial metric which can be written in a certain chart as

γαβ(r, θ, ϕ) =

 1
1−kr2 0 0

0 r2 0
0 0 r2 sin2 θ


αβ

.

The spacetime metric then has the form

gab(t, r, θ, ϕ) =


−1 0 0 0

0 a2(t)
1−kr2 0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 θ


ab

,

where a : R→ R is called the scale factor, which is all the freedom left after the symmetry
reduction. Geometrically, a(t) tells us how the different spatial slices are related. That is if
we had a spherical spacial space and a(t) = t then the spatial spaces would be a set of spheres
of increasing radius.

Lemma 20.1.7. We can redefine a(t) such that our condition for the geometries of constant
curvature becomes κ = 0,±1.

Remark 20.1.8 . Note that, provided a(t) is not constant, the time vector field (i.e. the one
orthogonal to all the Killing vector fields) is not Killing. That is, in our chart

L ∂
∂t
g 6= 0.

This is the statement that the universe need not be stationary.

20.2 Einstein Equations

20.2.1 Ricci Tensor

Let’s find the Γs for our spacetime metric above. We have

Γtαβ =
1

2
gtσ
(
gασ,β + gβσ,α − gαβ,σ

)
= −1

2
∂t
〈
a2(t)γαβ(r, θ, ϕ)

〉
= aȧγαβ,
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where we have used the fact that gab is diagonal so only we must take σ = t. Similarly we
have

Γαtβ =
ȧ

a
δαβ .

We also have that the all spatial Γs (i.e. the ones of the form Γαβρ) only depend on the
3-metric γ.

Exercise

Show that all the unrelated (i.e. cannot be obtained via symmetry of indices) Γs to
the above all vanish.
This is a rather tedious one, but it’s worth doing for practice.

We can use these above results to show that the components of the Ricci tensor are

Rictt = −3
ä

a
, and Ricαβ =

(
aä+ 2ȧ2 + 2κ

)
γαβ.

Exercise

Show the above Ricci tensor results.

20.2.2 Matter

So far we have only used the symmetry conditions to talk about the geometry, and not the
actual matter distribution itself. We can now use our symmetry conditions for exactly this,
and in doing so obtain the right-hand side of the Einstein equations. That is, we want to
find out what kind of matter distributions are allowed such that the symmetry conditions are
obeyed.

The trick is to again ‘zoom out’ and only look at the matter at a very large scale. We
model the matter in the universe via the following energy-momentum tensor

T ab = (ρ+ p)uaub + pgab,

where ua = (1, 0, 0, 0)a in our coordinates. Such a model is known as a perfect fluid of
density ρ and pressure p.

Pictorially this is seen as the idea of the worldlines of large scale structures (e.g. galactic
clusters) flowing along some temporal direction, given by u.

u
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Remark 20.2.1 . Note that the pressure and density can be functions of t, but they cannot be
functions of (r, θ, ϕ). This is the statement that they can vary through time, but if we want
homogeneity and isotropy, they cannot vary through space.

Terminology . The vector field u is often called the cosmic time, as it represents how the
cosmos flows through time.

20.2.3 Reduction of Einstein Equations

Recall that we can write the Einstein equations as

Ricab = 8πGN

(
Tab −

1

2
Tgab

)
.

Inserting our ansatz for gab and Tab we can show

ä = −4πGN
3

(ρ+ 3p)a (Acceleration Equation)(
ȧ

a

)2

=
8πGN

3
ρ− κ

a2
(Friedmann Equation)

Definition (Hubble Function). We define the Hubble function6 to be

H :=
ȧ

a
.

Exercise

Derive the Acceleration and Friedmann equations, and show that if we include a cos-
mological constant that the right-hand side of both equations gets a +Λ

3 .
Hint: For the second part, recall that including the cosmological constant into the
Einstein-Hilbert action we get a contribution of Λ to Einstein’s equations. That is
we have

Ricab −
1

2
Rgab + Λgab = 8πGNTab

Start from here and do the contraction to obtain an expression for Ricab = ... and then
use the above results.

20.3 Models of Perfect Fluid Matter

The upshot so far is that for our universe (with the symmetric assumptions) we have two
equations for three unknowns, namely ρ, p and a. This is obviously a problem.

What do we do? Well if we could someone obtain another equation relating at least two of
these unknowns we would stand a better chance. The two that seem most physical to relate
are the density and pressure, and so we want to ask the question "can we obtain a relation
between ρ and p from more detailed knowledge of what the nature of our perfect fluid is?"

6It is often called the Hubble constant, but it need not be a constant and so we call it the Hubble function.



LECTURE 20. COSMOLOGY: THE EARLY EPOCH 123

Definition (Equation of State). A relation between the momentum and density p = P(ρ) is
called an equation of state for the perfect fluid.

One often looks for a linear relationship, i.e. p = ω · ρ for some constant ω ∈ R.
So what could the fluid be? For now we shall just consider a Universe with only one type

of matter in it (next lecture we shall consider multiple kinds). The four main types are:

(i) A fluid made up of photons.7 This must obviously satisfy Maxwell theory, which tells
us that the energy-momentum tensor must be trace free

T abgab = 0.

We therefore have the condition that8

p =
1

3
ρ,

which tells us that ω = 1/3 for the radiation fluid. This also turns out to be a good
approximation for ultra-relativistic massive particles.

(ii) Another type of fluid is so-called dust. It simply represents a collection of particles
which do not interact, and therefore cannot exert a pressure. We conclude, then that
ω = 0 for dust.

(iii) The case of ω = −1 corresponds to the equation of motion for the cosmological constant.
It corresponds to fluid that has everywhere negative pressure.

(iv) The case for ω = −1/3 captures the spatial curvature in an equation of state.

Remark 20.3.1 . For (iii) and (iv) above, what we mean is that we can mimic the behaviour
of these quantities by introducing matter into the universe with the respective values of ω.

20.4 Solutions

Given the acceleration equation, the Friedmann equation and an equation of state for a given
matter type, we can solve the system. In the tutorials we will show that the following hold.
For κ = 0 = Λ:

(i) H2 ∼ ρ ∼ a−n(ω), where n(ω) = 3(1 + ω)

(ii) concretely,

a(t) = a0 ·

{
t2/n(ω) if ω 6= −1,

eHt if ω = −1.

Remark 20.4.1 . Note the ω = −1 case for a(t) tells us that H must be constant here, as
H = ȧ/a = Ḣt+H, and so Ḣ = 0.

7We use the word ‘photon’ here in a rather loose sense. We are discussing classical physics and so photons
should not be spoken of.

8If you have done the previous exercise, this result should be easy to see.
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The ω 6= −1 condition gives us a very important result:

ρ(t) ∼ t−2

for all matter types with ω 6= −1. This is an important result because we see as t → 0, ρ
diverges. That is the density tends to infinity at the start of cosmic time.

Now this might just seem like an artefact of our coordinate choice, but we know that
the density appears in Einstein’s equations and so if ρ diverges, the Ricci curvature must also
diverge. But the Ricci curvature is a tensor and so if it diverges in one chart it must diverge in
all charts, and so we get an infinite curvature of our spacetime at this point. Clearly we can’t
have this physically and so we must remove this point from our spacetime. Another way to
see this last point is that at t = 0, a = 0 and so the spacetime metric becomes non-inevitable.
We clearly cannot have this and so we must exclude this point. So in other words there is no
meaning to the question "what happened before t = 0?"

Putting all this together we see that what we have just described is the big bang! This is
another reason why t is called the cosmic time, it tells us the age of the cosmos. This result
clearly depends explicitly on all of the assumptions we have made so far, namely the perfect
symmetry of our universe and the fact that our equations of state are linear. One would be
very justified in asking "does this behaviour disappear if we do not make such conditions?"
Indeed this is what Hawking, Penrose and others sought to study.



21 | Cosmology: The Late Epoch

We now want to consider various matter types simultaneously. We will continue to assume
that our equations of state are linear, though. We do this simply because these lectures are
meant as an introduction to the field of cosmology and so we need to specialise somewhat.
Of course linear equations of state by no means cover every possible situation, and that is
part of what the research in cosmology is about; looking for what happens if we change our
conditions.

The information we have obtained so far can be summarised in the following table.

ω n(ω) a(t) matter type

1/3 4 t1/2 radiation
0 3 t2/3 dust
-1 0 eHt cosmological constant
−1/3 2 t spatial curvature

where H = ȧ/a is the Hubble function. We also had that ρ ∼ t−2 for all matter types with
ω 6= −1 and H2 ∼ ρ, which tells us that H−1 is the age of the universe.

21.1 Density Parameters

Definition (Density Parameter). Let ρi be the density of the ith matter type, where i =
1, ..., N with N being the number of matter types we’re considering. Then we define, for any
non cosmological constant or spatial curvature matter type, the density parameter

Ωi :=
8πGN

3

ρi
H2

.

For the cosmological constant type matter we define

ΩΛ :=
Λ

3H2
,

and for the spatial curvature we define

Ωκ := − κ

H2a
.

Remark 21.1.1 . Dr. Schuller likes to refer the the Ωis are density parameters whereas call the
Ωκ a ‘fake’ density parameter. The reason for this is that this type of density has not risen

125
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from some matter contribution to the Einstein equation, but more comes about by saying
‘what matter type would we need to simulate the effects of κ?’ Similarly you could call Λ
a pseudo-fake density parameter, as it does enter the action and we choose to view it as a
matter type rather then a curvature. With this idea in mind we shall define N to include the
cosmological constant type matter but not the κ type.

Using the Hubble function and the density parameters, the Friedmann and acceleration
equations give us

Ωκ +

N∑
i=1

Ωi = 1, and H−2 ä

a
= −1

2

N∑
i=1

(1 + 3ωi)Ωi,

respectively.

21.2 Dominant Matter At Various Epochs

Terminology . We shall use γ to denote radiation matter and M to denote dust matter, e.g.
nγ = 4 and nM = 3.

Using the above terminology along with the table at the start of this lecture and the result
ρi ∼ a−n(ωi), which also holds for the κ matter, we conclude that

ΩΛ ∼ a2Ωκ ∼ a3ΩM ∼ a4Ωγ .

This is an important observation and allows us to read off which matter types dominated
at which epochs of the universe. An expanding universe is one with H > 0, corresponding to
a(t2) > a(t1) for t2 > t1. We see, therefore, that at later times the matter types to the left
become more and more dominating and conversely at early times the ones of the right are
more dominant.

γ κ M Λ

timeBig Bang

Note this result comes from the theory, it is not something we have proposed as a model.
That is, given our assumptions, the theory tells us what matter types dominate at what
epochs.

21.3 A More Realistic Late Universe

We now want to start accounting for having multiple matter types in the universe at the same
time. Let’s start by considering the example where we have ΩM , Ωκ and ΩΛ. We can use
the Friedmann equation to express Ωκ = 1 − ΩM − ΩΛ, and so the parameter space of our
problem is two-dimensional, i.e. (ΩM ,ΩΛ).

We want to plot this parameter space, but it is worth deriving a few results in order to
classify the different regions of the plot.
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(i) We have seen that κ can be positive, negative or zero, so let’s try classify these regions.
Recall that Ωκ ∼ κ and so if κ = 0, Ωκ = 0. The Friedmann equation then tells us that
this corresponds to

ΩΛ = 1− ΩM .

By the same method we get ΩΛ > 1− ΩM for κ > 0 and similarly for κ < 0.

(ii) Now let’s consider the acceleration equation:

H−2 ä

a
= −1

2

N∑
i=1

(1 + 3ωi)Ωi.

We know that H and a are both positive, and so the sign of the left-hand just depends
on the sign of ä. We think of this physically as the acceleration of the expansion of
the universe, e.g. ä > 0 corresponds to an accelerated expansion. Using ωM = 0 and
ωΛ = −1 we get

ΩΛ =
1

2
ΩM

for ä = 0. We get analogous results for ä > 0 and ä < 0.

(iii) Now lets consider collapse vs. eternal expansion. That is, we want to ask the question
as to whether there is a maximum turning in a(t). We formulate this mathematically
as looking for a t∗ ∈ R+

0 such that ȧ = 0 and ä < 0. You can analytically calculate the
expression for the turning point (in the sense of the line that separates collapse from
eternal expansion), however its rather complicated. We shall just plot its form on the
graph below.

ΩΛ

ΩM0

1

−1

1 2

κ > 0

κ < 0

ä > 0

ä < 0

Collapse

Experimental observation tells us that ΩΛ = 0.7 and ΩM = 0.3, from which we conclude
(up to the uncertainty of the experiment) that κ = 0, i.e. the universe is a flat geometry. It
also turns out that the 30% of curvature generated by matter is further split into standard
model matter, which is only 5%, and so-called dark matter, which is the remaining 25%. So
we see, again assuming everything we have done is true and valid, that the standard model of
physics only makes up 5% of all the matter needed in the universe to explain our observations.
This is one of the main driving forces behind research in cosmology: what is this other stuff?!



22 | Black Holes

We want to study the Schwarzschild solution to Einstein’s equations. It is a vacuum solution
with the metric in the Schwarzschild chart, whose coordinates are (t, r, θ, ϕ), given by

g =

(
1− 2m

r

)
dt⊗ dt− 1

1− 2m
r

dr ⊗ dr − r2
(
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

)
,

where m = GNM with M being the mass of the object (in this case the black hole).

Remark 22.0.1 . Note that Dr. Schuller has gone back to using the (+,−,−,−) signature
here. I will follow this convention in these notes.

Notation. The final two terms in the above expression are often grouped into one and we
define

dΩ⊗ dΩ = r2
(
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

)
.

This notation is very popular in textbooks etc. as it lightens notation, and as we will see, it
is mainly the dt⊗ dt and dr ⊗ dr terms we are concerned with.

The above expression is obviously only for the Schwarzschild coordinates, but the metric it-
self can of course be expressed in any chart. We may think that the ranges of the Schwarzschild
coordinated coordinates are t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ (0, π) and ϕ ∈ (0, 2π). However,
after paying closer attention to the metric above we note an immediate problem: what hap-
pens at r = 2m? The dt ⊗ dt term goes to zero, which is bad enough, but on top of that
the dr ⊗ dr time diverges! We must, therefore, remove this point from our domain, i.e.
r ∈ (0, 2m)∪̇(2m,∞), where the dot denotes the fact that the union is disjoint. We then have
to ask the question about what actually happens at r = 2m?

The next question we should ask is "is there anything in the real world beyond the points
t→ ±∞?" This question sounds silly, as what is beyond ±∞, but we need to remind ourselves
that t : M → R4 is a chart map and we need not cover all of M with it. That is, we can
parameterise t such that a finite volume ofM is mapped to an infinite volume in R4. We can
ask a similar question about r →∞.

The insight to these questions comes from taking a step back and not looking at the above
expression itself but looking at objective objects instead, namely geodesics.

128
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22.1 Radial Null Geodesics

Consider null1 geodesics in Schwarzschild spacetime. The action is

S[γ] =

∫
dλ

[(
1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 − r2
(
θ̇2 + sin2 θϕ̇2

)]
.

Let’s first find the t equation of motion, i.e. vary w.r.t. δt. We have

d

dλ

[(
1− 2m

r

)
ṫ

]
= 0 ⇐⇒

(
1− 2m

r

)
ṫ = k,

for some constant k.

Definition (Radial Geodesics). We define a radial geodesic to be one that ‘follows r’. In
other words, we set θ = θ0 and ϕ = ϕ0, for some constants θ0 and ϕ0.

Exercise

Use the temporal equation of motion, the null condition and the radial condition to
show that we can use r as an affine parameter.
Hint: Show that r = ±kλ and then argue why we can consider r to be a affine parameter.
(If you need help Dr. Schuller explains this argument in the video).

We express the result of the above exercise as t̃(r) = t(±kλ). Let’s consider each case:

(i) First consider t̃+(r) = t(kλ). The chain rule gives us

dt̃+
dr

=
dt̃

dλ

dλ

dr
=
ṫ

ṙ
=

k(
1− 2m

r

)
k

=
r

r − 2m
.

Integrating this2

t̃+(r) = r + 2m ln
∣∣r − 2m

∣∣+ constant.

These are the outgoing null geodesics.

(ii) Now consider t̃−(r) = t(−kλ). A similar method to the above gives us

t̃−(r) = −r − 2m ln
∣∣r − 2m

∣∣+ constant.

These are the ingoing null geodesics.

To see what’s happening let’s plot the outgoing and ingoing geodesics.3

1Recall this just means g(vγ , vγ) = 0, which correspond to the worldlines of massless particles.
2This integral is not actually the easiest to do, but differentiating the result shows you that its true.
3This diagram was a pain to draw, so to any readers: I hope you like it!
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r

t̃

2m

outgoing

ingoing

This diagram can actually be very misleading. Firstly the light cones appear to be closing,
which is very strange and then all of a sudden emerge tilted on their side in the region r < 2m.
This problems stems from the fact that we are drawing deciding what the light cones look
like based on the charted geodesics, and is actually not a problem at all.4

The next problem is it appears that a geodesic that starts in the region r > 2m cannot get
to the region r < 2m. This seems completely crazy, because haven’t we heard before that a
Schwarzschild black hole is a dense object who has an event horizon at r = 2m. So shouldn’t
a geodesic go through this line? The answer is obviously "yes" and the problem is again an
artefact of the coordinate choice, specifically the range of t. To see why, imagine mapping
London5 into a chart of infinite volume. Consider someone who lives in London but works
outside London: in the morning they set off from home to work, and then after work they
decide to come back in to London for a meal with a friend. If we plotted their path in our
chart it would look like the following:

It is clearly not true that this person didn’t cross the blue line, it is simply just not included
in the chart. In other words, we expect that the path is really like the following:

4I have written my own ideas for what I believe is really happening here and uploaded it to my blog site.
Those notes contain many errors I need to go back and fix, but the interested reader will still hopefully find
it an enjoyable read.

5Dr. Schuller uses Linz, but I am British so I’ll use London.
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Could the same thing be true for our Schwarzschild picture? The answer is "yes", and we
shall explain how in the next section.

22.2 Eddington-Finkelstein

The idea is to change the coordinates such that, in our new coordinates the ingoing null
geodesics appear as straight lines of slope −1. This is achieved by the coordinate

t̄±(t, r, θ, ϕ) := t̃± + 2m ln |r − 2m|.

Rearranging this for t̃− and plugging it into the expression for t̃−(r) you get

t̄− = −r + constant,

which is exactly what we wanted. We also get

t̄+ = r + 4m ln |r − 2m|+ constant,

which will have the same kind of shape as before (but slightly scaled). The graph therefore
becomes:

r

t̄

2m

outgoing

ingoing

Note the points along r = 2m are still not a part of our chart (U, x) and so must be
excluded. However at this point it becomes clear that there is nothing wrong with this points
and we can simply define a new chart domain V := U ∪ {r = 2m}. This then gives the same
diagram as above but without the white circles.
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We wont draw it again just for the sake of removing the circles, however it is worth noting
that on this new chart we could plot the line cones at r = 2m. All the the cones along this
line would have their right side vertical. This is the condition that the r = 2m is the horizon
and it corresponds to the point of no return. That is, recalling that the world line of a massive
observer must have its tangent vectors within the light cone, at r = 2m an observer can no
longer move away from the black hole and is destined to meet the singularity.

Remark 22.2.1 . We can think of the Eddington-Finkelstein coordinate transformation as one
that ‘pulled’ points downwards. Using our London commuter as an example, we see this as
the following diagram: (the blue arrows represent what that transformation does)

Schwarzschild Eddington-Finkelstein

Remark 22.2.2 . Note to self: Maybe include a comment about maximal extension here. Just
roughly what it means etc.

Now let’s calculate the Schwarzschild metric g w.r.t. Eddington-Finkelstein coordinates.
Our coordinate transformation is given by

t̄(r, t, θ, ϕ) = t+ 2m ln |r − 2m|
r̄(r, t, θ, ϕ) = r

θ̄(r, t, θ, ϕ) = θ

ϕ̄(r, t, θ, ϕ) = ϕ.

If we denote the Schwarzschild coordinates by (x0, x1, x2, x3) and the Eddington-Finkelstein
coordinates by (y0, y1, y2, y3) then our problem is to find

g(y)ab =
∂xm

∂ya
∂xn

∂yb
g(x)mn.

It looks like we need to invert the transformations above to obtain xi(y), however we have
shown in the tutorial 5 that

δmn =

(
∂xm

∂ya

)(
∂ya

∂xn

)
=⇒

(
∂ya

∂xm

)−1

=

(
∂xm

∂ya

)
,

and so we can use our transformation equations above and then invert the matrix of results.6

6Note this is not the same as just doing the reciprocal of the fraction, as if the matrix is not diagonal the
inverse elements are not just the reciprocals.
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We have

(
∂ya

∂xm

)
=


1 2m

r−2m 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 =⇒
(
∂xm

∂ya

)
=


1 −2m

r−2m 0 0

0 1 0 0
0 0 1 0
0 0 0 1


Using the result, and dropping the bars on r, θ and ϕ, we get

g =

(
1− 2m

r

)
dt̄⊗ dt̄− 2m

r

(
dt̄⊗ dr + dr ⊗ dt̄

)
−
(

1 +
2m

r

)
dr ⊗ dr − dΩ⊗ dΩ.

Exercise

Prove the above result.
Hint: You can either do it using the transformation above (which is done in the video)
or you can use the definition of the exterior derivative d. The two methods are, of
course, equivalent.

22.3 Kruskal-Szekeres

As we have seen in both the Schwarzschild and Eddington-Finkelstein coordinates, the light
cones either squash up or rotate and, although these can give some nice insights, we can ac-
tually make further coordinate transformations such that the outgoing geodesics also become
straight lines of slope +1. In doing so, our light cones will all sit vertically and will always
make a 90 degree angle. Of course this comes at the expense of the coordinates themselves
look a bit funny, but that is the trade off. Such coordinates are known as Kruskal-Szekeres
coordinates. The coordinate transformatio is given by: for r > 2m

¯̄t(t, r, θ, ϕ) :=

(
r

2m
− 1

)1/2

er/4m sinh

(
t

4m

)
¯̄r(t, r, θ, ϕ) :=

(
r

2m
− 1

)1/2

er/4m cosh

(
t

4m

)
and for r < 2m

¯̄t(t, r, θ, ϕ) :=

(
1− r

2m

)1/2

er/4m cosh

(
t

4m

)
¯̄r(t, r, θ, ϕ) :=

(
1− r

2m

)1/2

er/4m sinh

(
t

4m

)
and θ and ϕ are unchanged.
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Exercise

Show that the Kruskal-Szekeres coordinates tell us

¯̄t2 − ¯̄r2 =

{
−k2 r > 2m

`2 r < 2m

for k, ` ∈ R.

From the exercise above we see that the plot consists of sets of hyperbolas. What is truly
surprising about these solutions is that admit new regions to our spacetime, as the following
diagram shows.

¯̄r

¯̄t

I
II

III
IV

We get four regions: region I is our universe, and lines of constant r are the hyperbolas
drawn; region II is the black hole with the snake-line being the singularity, and it is only
the shaded region that is part of the spacetime; region III is completely new and represents
another, causally disconnected, universe where again lines of constant r are the hyperbolas
drawn; region IV is what we call a white hole, as all casual geodesics (i.e. massive and massless
particles) must leave it and enter either region I or region III. Inside the black/white hole the
relevant hyperbolas represent lines of constant t.

Light cones stand ‘upright’ everywhere on the diagram, which allows us to note that the
dashed lines represent the event horizons of the black hole and white hole; any geodesic that
passes the dashed line between regions I and II is doomed to meet the singularity.

After getting over the immediate shock of another universe and a white hole, a vital
question raises itself: "what on earth happens at the origin (i.e. where the dashed lines
cross)?" The answer to this question is quite complicated but is basically that there is a
change in topology. If we consider spatial slices moving up the diagram, we get something
like the following picture: suppressing the θ and ϕ directions, we get
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¯̄t
0

The structure formed at ¯̄t = 0 is a so-called wormhole and it corresponds to a ‘portal’
between regions I and III. The points where the blue lines become green is known as the
throat7 of the wormhole. The wormhole corresponds to a spatial slice and so it is not actually
something an observer could travel through, but it is an incredibly interesting idea, and it led
Einstein and Rosen to try and propose such a ‘bridge’ between spacetime points on a causally
connected manifold. The result of this is a so-called Einstein-Rosen bridge.

22.4 Other Types of Black Hole

Theorem 22.4.1 (No Hair). All black hole solutions to Einstein’s equations and Maxwell’s
equations can be completely characterised by their mass, angular momentum and electric
charge.

From the above theorem it is clear that we can have four different types of black hole,
summarised in the table below

Name Mass Angular Momentum Electric Charge

Schwarzschild 3 7 7

Kerr 3 3 7

Reissner–Nordström 3 7 3

Kerr-Newman 3 3 3

In this lecture we have only discussed the Schwarzschild black hole, but have not mentioned
any of the other three at all. We shall not discuss the other black holes in great detail in
these notes, but in order to highlight some quite surprising results we shall make some brief
comments on the Kerr black hole.

7The name comes from the idea that if we reinsert θ that we would get a tube like structure here and it
would look like a throat connecting two spaces. See the diagram of the Einstein-Rosen bridge.
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We have seen above that the Schwarzschild black hole give rise to a point on the space-
time that must be removed, i.e. the singularity. Physically speaking, we imagine a massive
spherically symmetric star collapsing down into a single point at the centre. This singularity
point must, therefore, contain the information about the black hole.8

A Kerr black hole, however, is an electrically neutral, rotating black hole. Putting this
together with the fact that general relativity is a classical theory, it is clear that we can not
have a single point for our singularity. That is, the singularity must contain information about
the angular momentum of the black hole, but classically a single point cannot have angular
momentum. The next best option is to consider an infinitely thin ring of non-vanishing radius.
This is indeed what you get for a Kerr black hole, the result being known as either a ring
singularity or the composite word: a ringularity.

Claim 22.4.2 . An observer can avoid a ring singularity and pass through the disc bound by
it an emerge in what some people call an antiverse.

We do not prove the above claim.

22.4.1 Event Horizons & Infinite Redshift Surfaces

As well as exhibiting a ring singularity, Kerr black holes also possess another new idea. In order
to understand it a bit better, let’s take another look at what happens to the Schwarzschild
metric (in Schwarzschild coordinates) at r = 2m. Specifically, let’s consider the gtt and grr
components:

gtt = g(∂t, ∂t) =

(
1− 2m

r

)
, and grr = g(∂r, ∂r) =

(
1− 2m

r

)−1

.

We see straight away that for r > 2m, gtt > 0 and grr < 0, whereas for r < 2m, gtt < 0 and
grr > 0. So the point r = 2m seems to correspond to a sign change in these components. We
can word this as the statement: "as we move from r > 2m to r < 2m the timelike vector field
∂t becomes spacelike, whereas the spacelike vector field ∂r becomes timelike."

Now these two conditions in themselves need not be related, that is the fact that ∂t
becomes spacelike is not fundamentally related to ∂r becoming timelike. It is true, however,
the something must become timelike, otherwise the signature of our metric would change —
i.e. we would end up with (+,+,+,+), in our convention — but ∂r is not the only choice, we
also have ∂θ and ∂ϕ. Before moving on to discuss when one of these latter two might become
timelike, let’s first try and work out what our two conditions mean physically.

First let’s consider ∂r becoming timelike. Recall that the interior of the future light cone
gave the possible future of a massive observer. We use the word ‘future’ as clock carried
by this observer will increase in time as you follow timelike geodesics. This was given as a
definition and so will always hold, regardless of which coordinate vector field is timelike and
which are spacelike. However, this latter distinction does have an effect our interactions with
external observers. Roughly speaking, the projection of our velocity is non-vanishing only for
timelike vector fields, and so our future cannot be orthogonal to these directions. The more
‘central’ to the cone the timelike vector field, the more our future is determined by it.

8Disclaimer: I’m not sure how correct of a statement this is to make. I am not overly fond of attributing
information to an absence of a point on the spacetime, but this argument makes explaining the next bit much
easier, so we’ll assume its ok.
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This might sound a bit funny, but it is easily understood by considering time dilation
in special relativity. The spacetime of special relativity is flat Minkowski space and all of
the cones stand upright and make 90 degrees. Let’s now consider the chart with chart maps
(t, x, y, z). A stationary observer (γ, e) in this frame will follow a geodesic whose tangent
vectors are integral curves of the vector field ∂t. We can choose to parameterise this curve
such that g(e0, ∂t) = 1, that is the clock carried by this observer agrees with the coordinate
time t.

Now consider another observer (δ, f) moving relative to the first. They will follow a
geodesic that is not an integral curve of the ∂t vector field. This observers frame will obey
0 < g(f0, ∂t) < 1, where the value in the range depends on the velocity of δ. This is what we
mean above about having a non-vanishing projection onto our timelike vector field.

Now to the stationary observer, both of them age, as they both have a non-vanishing
projection onto e0 direction,9 however the second observer seems to age slower, as g(f0, ∂t) <
g(e0, ∂t).

With the aside on special relativity in mind, we can see that the condition that ∂r become
a timelike vector tells us that, from the perspective of an observer stationary w.r.t. the
Schwarzschild coordinates, the observer must move along with some projection along the ∂r
axis. But what is stationary w.r.t. the Schwarzschild coordinates? Well the black hole of
course! So we see that an observer at r < 2m must move along the radial direction. The
question is "which way?" Again this might sound silly, but it makes a lot more sense when we
remember that in the special relativity case, we always move up the t axis and not backwards
into the past.

We shall not discuss this too deeply here10 (as we are already being rather hand-wavey),
but the general idea is that when ∂r becomes timelike it actually points into the past light
cone, and so our future is determined by moving towards the black hole. So we have discovered
that ∂r becoming timelike corresponds to an event horizon!

What about ∂t becoming spacelike, what is that all about? In order to save space, we shall
not discuss exactly where this comes from, but it turns out this corresponds to a so-called
infinite redshift surface. The name comes from the idea that, to an observer at r → ∞,
light emitted at the points where ∂t becomes timelike is redshifted so much that it actually
‘disappears’. This is a very strange statement to make as firstly its only true for an observer
infinitely far (indeed an observer at finite distance will be able to detect the light, all be it
highly redshifted) away and secondly the idea of completely redshifting something away is
strange. This is the reason we are not presenting the mathematical origin of this phenomenon
here.

There is, however, a much nicer (in my opinion) physical interpretation to what happens
at an infinite redshift surface. As we have explained, for ∂t to become spacelike, one of the
spacelike vector fields must become timelike. We argued that this in turn causes relative
motion between the observer and the black hole along (or against) the direction of this vector
field. This is a much nicer idea, and so it is what we shall use.

Remark 22.4.3 . Note it follows from our arguments above that in order to reach an event

9We should be careful here because e0 is only defined along γ, but it should be relatively clear what we
mean.

10I discuss this in more detail in the notes I made about light cones and event horizons, which are available
on my blog site.
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horizon an observer must pass through an infinite redshift surface. That is, if ∂r is to become
timelike, ∂t has to become spacelike before it or at the same time.

Remark 22.4.4 . It is important not to confuse the coordinate t with the time measured on an
observers clock. Inside an infinite redshift surface ∂t is spacelike, and so we can move ‘down’
it. If we took this to be time then this would be the statement that we can travel backwards
in time. If this was true time reversal, travelling along this direction would take us backwards
and out of the infinite redshift surface. This is not what happens at all, and is seen easily by
the fact that we measure time via the clock we carry. What the above does say, though, is
that, to an observer stationary w.r.t. the black hole, we can travel backwards in time as we
can move along a geodesic that has positive projection along −∂t.

22.4.2 Ergoregion

The metric for the Kerr black hole is not particularly insightful to see itself, and so we do not
present it here but instead just summarise the results.

It turns out that, unlike for the Schwarzschild black hole, the event horizon and infinite
redshift surface for the Kerr black hole do not coincide. That is rIRS > rEH , where rIRS
(rEH , respectively) is the r value of the infinite redshift surface (event horizon, respectively).

Definition (Ergoregion). The region rEH < r < rIRS is called the ergoregion (or ergo-
sphere).

The obvious question to ask is "what is the timelike vector field in the ergoregion?" The
answer to that question is the direction of rotation, ∂ϕ. It turns out the ∂ϕ lies in the future
cone and so an observer in the ergoregion must rotate with the black hole.

Remark 22.4.5 . There is an interesting idea to extract energy from the ergoregion of a Kerr
black hole known as the Penrose process. We shall not discuss it here, but readers are
encouraged to search it as it is quite interesting.

22.4.3 Multiple Event Horizons

It also turns out to be true that the non-Schwarzschild black holes all have two event horizons
and infinite redshift surfaces. The presence of the inner event horizon means that one can
traverse a black hole without meeting the singularity and can emerge into another universe!
We do not discuss this in more detail here but highlight it in the Penrose diagrams next
lecture.



23 | Penrose Diagrams

Would it not be nice to be able to draw an informative picture of an entire spacetime on a
finite portion of paper? For some spacetimes, this is possible and the resulting diagrams are
known as Penrose (or Penrose-Carter) diagrams. In order for the diagrams to be useful, we
will compromise on a number of issues, but we will not compromise on the nice property of
null geodesics having slope ±1, i.e. the light cones stand upright and make a 90 degree angle
everywhere.

23.1 Recipe To Construct A Diagram

The ‘recipe’ is as follows:

(i) Start with a spacetime metric in some chart, and painfully note the coordinate ranges.

(ii) Find coordinates such that two previously non-compact coordinates are replaced by two
(possibly still non-compact) null coordinates, which we label v and w.

(iii) Compactify the two null coordinates separately, i.e. introduce new coordinates1

p := arctan(v), and q := arctan(w).

Thus (p, q) will take values in (some subset of) (−π/2, π/2)× (−π/2, π/2).

(iv) Define again a temporal and spatial coordinate

T := p+ q, and X := p− q,

again keeping track of the ranges.

(v) Express the metric g in the coordinates (T,X, ...), where ... are the original coordinates
which we haven’t changed.

(vi) If 2 the metric in these coordinates takes the form

g = Ω−2(T,X, ...)
[
dT ⊗ dT − dX ⊗ dX −R(T,X)

(
d...⊗ d...

)]
.

1You don’t need to use arctan, but just any compactifying function.
2It may not be possible!

139
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where d... ⊗ d... is meant to indicate the remaining coordinates in diagonal form (e.g.
dθ ⊗ dθ + dϕ⊗ dϕ), then obtain the non-physical diagram

gdiagram = dT ⊗ dT − dX ⊗ dX,

again noting the ranges.

The above result seems rather strange; essentially what we’ve done is turn everything into
what appears to be flat Minkowski space! Well yes and no. Yes because we want the cones
to stand upright and at 90 degrees, but no because (T,X) ⊂ R × R is not an equality: our
diagram is finite in size. We can therefore think about the information of the diagram, and
therefore the spacetime, as being contained in where the boundaries are.

Remark 23.1.1 . Step (ii) in the above is important, as its what allows us to preserve the cones.
This is easily seen pictorially, as compressing along null coordinates doesn’t change the angles
of the cones, whereas if we had used a temporal coordinate and a spatial coordinate, we would
only preserve the angle if we compactified in a 1 : 1 manner everywhere.3

Remark 23.1.2 . In going to step (vi) we seem to have ‘forgotten’ about the Ω−2 factor and
the R(T,X)(...) terms.

The first is simply a conformal factor,4 and conformal factors do not change the shape
of null geodesics. They will, however, change the shape of others (i.e. timelike and spacelike
geodesics). We state this more precisely in the following proposition. Seeing as we are only
interested in persevering the null geodesics (i.e. the light cones), we can do this and just
accept that the shape of the others will change.

The second point we fix by simply imagining that at each point on our diagram we attach
a space whose geometry is given by the R(T,X)(...) terms. This is why we allowed R to be a
function of T and X and also why we denote it R — we can loosely think of it as being the
radius of these geometries we attach.

Proposition 23.1.3. A curve γ is a null geodesic of g if and only if if it is a null geodesic
of Ω2g, where Ω2 ∈ C∞(M) is no-where vanishing.

Proof. Let g∇ and Ω∇ denote the connections associated to g and Ω2g, respectively. Let
γ : (0, 1)→M be a curve and denote the tangent vector field to it by X. Then:

3The below diagram is a bit misleading: the cones are infinitely big so when we draw them smaller to the
right we just mean that the part part of the cone has been made smaller; both are still infinite in size.

4A lot more information on conformal transformations can be found in my notes on Dr. Shiraz Minwalla’s
String Theory course.
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(⇒) Assume γ is a affinely parameterised null geodesic of g. That is g∇XX = 0. Now
consider the covariant derivative of X using Ω∇:(

Ω∇XX
)a

= Xb ∂

∂xb
Xa + ΩΓacbX

bXc

= Xb ∂

∂xb
Xa +

1

2Ω2
gad
[
(Ω2g)cd,b + (Ω2g)bd,c − (Ω2g)bc,d

]
XbXc

Let’s just consider the second term,

1

2Ω2
gad
[
(Ω2g)cd,b + (Ω2g)bd,c − (Ω2g)cb,d

]
XbXc =

1

2Ω2
gad
[
2Ω2

,bgcd − Ω2
,dgbc

]
XbXc

+
1

2Ω2
Ω2gad

[
gcd,b + gbd,c − gbc,d

]
XcXd,

where we have used the summation convention to obtain the 2 inside the first square
brackets. The second term on the right-hand side goes with the first term of the right-
hand side of the first equation to give us g∇XX, which we assumed vanished, so we are
just left with (

Ω∇XX
)a

=
1

2Ω2
gad
[
2Ω2

,bgcd − Ω2
,dgbc

]
XbXc.

Now the second term on the right-hand side contains gbcXbXc = g(X,X) = 0, as our
geodesic is null, so we are just left with the first term. We have

1

Ω2
gadgcdΩ

2
,bX

bXc =
2

Ω
Ω,bX

bXa

= 2X〈ln Ω〉Xa

= A ·Xa

where we have used gadgcd = δac and the fact that X〈ln Ω〉 ∈ C∞(M) and denoted it by
A. So we finally have (

Ω∇XX
)a

= A ·Xa.

This is the equation for a geodesic that has not been affinely parameterised, which is
why it doesn’t vanish.

So we have shown it is a geodesic. We now just need to show it is null. Trivially we
have (

Ω2g
)
(X,X) = Ω2 ·

(
g(X,X)

)
= 0.

(⇐) This is the same calculation as above but made in reverse.

Remark 23.1.4 . Note we had to use the null condition to show that we had a geodesic of Ω2

(i.e. to remove the gbcXbXc term). It is for this reason that it is only the null geodesics that
are left untouched by our conformal transformation, whereas the shape of our other geodesics
change.
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23.2 Minkowski

The simplest vacuum solution of Einstein’s equations is Minkowski space, which in coordinates
(t, r, θ, ϕ) with t ∈ (−∞,∞), r ∈ (0,∞), θ ∈ (0, π) and ϕ ∈ (0, 2π), has the metric

g = dt⊗ dt− dr ⊗ dr − r2
(
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

)
.

Our two non-compact coordinates are t and r and so it is these we replace by null coordinates.
We define5

v := t+ r, and w = t− r.
The range here is v, w ∈ R, but with the condition r = 1

2(v−w) > 0, and so we require v > w.
Now we compactify:

p := arctan(v), and q := arctan(w).

Our range is now p, q ∈ (−π/2, π/2) with the condition p > q. Now we construct the new
temporal and spatial coordinates

T := p+ q, and X := p− q.

Using p = 1
2(T +X) and q = 1

2(T −X), the ranges/condition then become

−π < T +X < π, −π < T −X < π, and X > 0.

We now need to express our metric in terms of (T,X, θ, ϕ). We need to obtain expressions
for T and X in terms of these coordinates. Putting the above results together, we have

T := arctan(t+ r) + arctan(t− r), and X := arctan(t+ r)− arctan(t− r).

The metric in these coordinates is

g = sec2(T +X) sec2(T −X)
[
dT ⊗ dT − dX ⊗ dX −R(T,X)

(
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

)]
,

where

R(T,X) :=
r2(T,X)

sec2(T +X) sec2(T −X)
.

Exercise

Prove the expression for the metric above is true.
Hint: use

t+ r = tan(T +X), and t− r = tan(T −X).

along with d(f(x)) = ∂ifdx
i to find dt and dr in terms of dT and dX, then multiply

out all the terms and cancel.
Hint 2: Before doing the big expansion, look at the expressions for dt and dr and argue
that its terms containing sec2(T +X) sec2(T −X) that will remain.

We can therefore draw the diagram of

gdiagram = dT ⊗ dT − dX ⊗ dX,

with the ranges |T −X| < π, |T −X| < π and X > 0.
5As an additional exercise, check that these are indeed null.
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X

T

π

−π

π−π

I+

I−

i0

i+

i−

Where we have labelled:

• Spacelike infinity, i0,

• Future timelike infinity, i+,

• Past time like infinity, i−,

• Future null (or lightlike) infinity I+, and

• Past null (or lightlike) infinity I−.

The above points get there name from the following proposition.

Proposition 23.2.1. 1. All spacelike geodesics start and end at i0,

2. All null geodesics start on I− and end at I+, and

3. All timelike geodesics start at i− and end at i+.

We then remember that we have suppressed θ and ϕ. So if we reinstate the ϕ, its like
rotating this diagram around the T axis, and we obtain a diamond shape.

I+

I−

i0

i+

i−
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23.3 Other Spacetimes

In the following diagrams we shall use light grey to shade the universe(s), yellow to shade
antiverse(s), black to shade black hole(s), white to shade white hole(s), pink to shade the
wormhole(s), and snake-like lines to indicate singularities, using a broken line for ring singu-
larities to remind us that they can be avoided. We shall also stick to the colours above to
label the is and Is. We shall also use capital Latin numbers (i.e. I, II, etc) to number the
universes.

23.3.1 Schwarzschild Black Hole

If you take the maximally extended Kruskal-Szekeres coordinates for the Schwarzschild black
hole shown at the end of the last lecture and compactify along the diagonals, you obtain the
following Penrose diagram.

i+Ii+II

i−Ii−II

i0Ii0II

I+
II+

II

I−II−II

III

BH

WH

We have already basically discussed this entire diagram when considering Kruskal-Szekeres
coordinates, and so we do not make further comments here.

23.3.2 Kerr Black Hole

Recall that a Kerr black hole is a electrically neutral, rotating black hole that has a ring
singularity and two event horizons. The presence of the inner horizon (the one at smallest r)
turns out to result in a passage to a worm hole, which in turn leads to a white hole and then
another universe. It also turns out to be true that you can pass through the disc bound by
the ring singularity and emerge in what some people refer to as an antiverse. The Penrose
diagram for a Kerr black hole is the following beast.

We see that we have one universe after another, and unlike the Schwarzschild solution,
these universes are causally connected. So an observer could travel into the black hole and
out into a worm hole through the inner event horizon and then into another universe. Note
that the boundaries of the antiverse correspond to r = −∞.
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There is an interesting and important point to notice about the antiverse regions I and
II; there is no event horizon between ‘shielding’ the ring singularity. Such a singularity is
known as naked. This violates the so-called weak cosmic censorship hypothesis which loosely
says that singularities shouldn’t be observable to null infinity, hence why we have not labelled
the r = −∞ boundaries with I+s.

23.3.3 Reissner-Nordström Black Hole

A Reissner-Nordström black hole is a non-rotating, electrically charged black hole. As the
black hole is no longer rotating, it need not have a ring singularity and as such we can no
longer avoid it and pass into the antiverses. The Penrose diagram looks basically identical to
the Kerr Penrose diagram, but with the broken snake-like lines made continuous. It is also
sometimes drawn with the antiverse separated from the wormhole region and an indication
of the charge of that side of the black hole given. That is, the relevant parts of the diagram
become the following

+ −

What we have described above is actually case for a so-called sub-extremal Reissner-
Nordström black hole, which means that the two horizons do not coincide. If you actually
write down the metric and find where these horizons occur, you see that the two can actually
coincide if the mass and charge of the black hole are equal. In this case we the topology of
the diagram changes. We will not draw the diagram here6 but we simply make this comment
for completeness.

Remark 23.3.1 . Note because there is a topology change between the extremal and sub-
extremal case, it is not believed that we could turn a sub-extremal Reissner-Nordström black
hole into an extremal one by simply adding charge to it. Indeed, adding charge would take
energy and therefore would also increase the mass of the black hole, keeping the black hole
sub-extremal.

23.3.4 Kerr-Newmann Black Hole

A Kerr-Newmann black hole is both rotating and has electrical charge. We therefore expect
the Penrose diagram to be a combination of the previous two. This is indeed the case. Again

6It can be found here.

https://jila.colorado.edu/~ajsh/insidebh/penrose.html
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because we have the ring singularity, it is possible to avoid it and enter into the antiverses.
The Penrose diagram for the Kerr-Newmann black hole is quite often drawn identically to the
one we have presented for the Kerr black hole, but it is important to remember that we should
indicate the charge of the black hole somewhere, as we did with the Reissner-Nordström black
hole. We shall not draw the diagram here to save space.

23.3.5 Gravitational Collapse

All of the Penrose diagrams for black holes assume that the black hole has always existed.
That is they were not formed via some physical process such as the collapse of some massive
star. We now want to draw such a Penrose diagram. In the following diagram cyan area
indicates the collapsing matter, and the dashed line indicates that the line r = 0 is not part
of the universe.

I−

I+

i−

i0

i+

i−

i+i+

i0

I−

I+

The above diagram might suggest that the matter first spreads out and then comes back
together, but we need to remember that the paths of timelike geodesics are affected by our
conformal factors. The matter is collapsing as you move up the diagram, and, once the mass
is within the Schwarzschild radius r = 2m, it forms a black hole. Again this is diagram has
two dimensions suppressed, and on the right we have tried to draw what it looks after rotated
around the vertical line.

Note that by requiring that the Schwarzschild black hole forms in this manner (as opposed
to having always existed) has removed the very undesirable white hole region on the diagram.

23.3.6 Isotropic & Homogeneous Universe

Let’s consider the case when the universe is filled only with radiation (i.e. κ = 0 = Λ). For
a short period after the Big Bang, certain processes ‘held’ the light back and so the universe
was opaque, and then at some point the light was allowed to propagate, making the universe
transparent.

On the suppressed diagram, the points where the universe becomes transparent will be a
horizontal line (as its a spatial line). If we then reinsert the suppressed dimensions, this line
becomes a ball surrounding us. This is known as cosmic microwave background, or CMB for
short. This is an important thing to note, as it is something that we should be able to observe
experimentally, and further supports the Big Bang theory. Indeed some people even refer to
the CMB as being ‘the after glow of the Big Bang’.
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i−

I−

I+

i+

We have used a lined fill to indicate the region where the universe is opaque. The green line
is used to indicate that light rays are free to propagate from that point on-wards.7 Note that
the singularity at the bottom corresponds to the past timelike infinity. This is the statement
that all matter (which travels along timelike curves) is created by the Big Bang. On the right
we have again included reintroduced one of the suppressed dimensions, and we see that the
CMB becomes a disc. There is actually a very important question to ask about the CMB,
which we highlight now with use of the next diagram.

Experiments tell us that wherever we look at the CMB we get similar data, e.g. that the
temperature is about 3K. This might not seem like a problem, after all we want homogeneity
and isotropy, but it does pose a problem. Projecting the rotated diagram onto a 2D-plane to
simplify the drawing, consider some point in the universe and look at it’s past light cone to
which points are casually connected, i.e. can influence our point. Take the two points on the
opaque-transparent dividing line and consider their past cones, if they do not overlap they
are completely independent. That is there is no point that can influence both points.

If the points are completely independent, why do we get the same measurements for both
of them? This is not just for two special points on the CMB, but all the points on the CMB.
This problem is known as the cosmological horizon problem (or the homogeneity problem).
The most commonly accepted fix to the problem is to include a so-called inflaton field, which
gives rise to cosmic inflation.

7We might actually not be able to call this I− because maybe null geodesics are defined below this line. I
don’t actually know the answer to this question, if any readers do please feel free to send me an explanation
and I’ll update it with credit.
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We have seen that in order for us to solve Einstein’s equations exactly, we require strong
symmetry conditions, or, equivalently, simply energy-momentum tensors. This is a shame as
we would obviously like to also study the cases of weaker symmetry conditions. An important
example would be to find the gravitational filed, g,1 within for a rotating shell of evenly
distributed mass.

ω

Note that Newtonain gravity, which is given by Poisson’s equation

ρ = ∇2φ,

would tell us that the gravitational field inside the shell vanishes as ρ vanishes inside it.
Besides this fact, introducing rotation would not effect the gravitational field as all Poisson’s
equation cares about is the distribution of mass ρ, and our mass is evenly distributed so there
is no change by rotation.

Einsteins equations2

Gab[g] = Tab[g,Φ],

will encode both a non-vanishing field inside the shell and will also encode the change due to
introducing rotation, as the T0µ components encode the angular momentum.

24.1 Perturbation Of Exact Solutions

Assume that an exact solution g to some Einstein’s equations

Gab[g] = Tab[g]

1Technically g is the gravitational potential, but this subtlety is not important here.
2In units where 8πGN

c4
= 1.

149



LECTURE 24. PERTURBATION THEORY I 150

is known in terms of of component functions gab w.r.t. to some coordinate chart(s). It would
be nice to be able to extract the gravitational potential, gab + δgab, that solves the equations

Gab[g + δg] = Tab[g] + δTab[g],

where δTab[g] is a small perturbation of the right-hand side of the Einstein equations. If the
perturbation on the right-hand side is small, we can assume that δg itself is small3 and so we
can expand

Gab[g] + δG[g, δg] +O(δg2) = Tab[g] + δTab[g],

where δG[g, δg] has linear dependence on δg. Dropping the higher order terms and using the
fact that g is an exact solution, we have

δGab[g, δg] = δTab[g].

The remaining task is to then find δgab. This method is known as linear perturbation theory.

Example 24.1.1 . For the shell of mass, we could consider the exact solution to be that where
there is no shell at all, i.e.

Gab[g] = 0.

We know an exact solution to this is given by the flat metric g = η. We can now ask the
question about introducing a small mass that rotates slowly and treat it as a perturbation to
the energy-momentum tensor,

δGab[η, δg] = δTab[g].

Remark 24.1.2 . It will turn out to be interesting to also consider cases where the right-hand
side of the Einstein equations are not perturbed (i.e. δTab[g] = 0). For example this will lead
us to so-called gravitational waves. This might seem like a strange thing to say, as how can
we perturb the metric but not the right-hand side of the Einstein equations? The answer is
the idea that the right-hand side encodes the matter in the spacetime, whereas the metric
encodes the gravity and curvature. We can think of this as ‘prodding’ the spacetime manifold
and getting it to ripple, without introducing any new matter. It is by the same argument
that we see that δTab is only a function of g and not δg.

24.2 The Perturbed Metric

The idea is the following: we are calculating/solving in some chart (U, x) anyway, so we can
equally well arrange for our known exact solution to take a particular form. For example, for
a static metric g, we can always find a chart (U, x) such that

gab =


1 0 0 0

0
0 −γαβ
0

 ,

3If it turned out not to be small, we should have that a small change to the right-hand side of our equations
of motion gives rise to a large change on the left-hand side, indicating that the solution is not stable. We
clearly ignore any cases like this on physical grounds.
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where γαβ is some time-independant Riemannian 3-metric. We can write this more compactly
as

g = dx0 ⊗ dx0 − γαβdxα ⊗ dxβ.

This particular case is useful for taking perturbations about Schwarzschild spacetime, for
example.

Now it is clever to describe the 10 small fields encoded in δgab as

δg = 2a dx0 ⊗ dx0 − bα
[
dx0 ⊗ dxα + dxα ⊗ dx0

]
−
[
2c γαβ + eαβ

]
dxα ⊗ dxβ,

for small, spatial

(i) scalar fields a and c,

(ii) vector field bα = γαβbβ ,

(iii) symmetric tensor field eαβ , which is trace free, γαβeαβ = 0,

all of which are allowed to depend on all xas (i.e. can depend on x0, even though they are
spatial).

Remark 24.2.1 . Note this is just the perturbation. That is the complete new metric is g+δg =
(1 + 2a)dx0 ⊗ dx0 − ....

Counting the number of degrees of freedom, we have

(i) 1 + 1 = 2,

(ii) 3,

(iii) 3(3+1)
2 − 1 = 5

to give a total of 10, as required.

Remark 24.2.2 . It is simply convenient to think of a general perturbation of the metric in
terms of these 10 degrees of freedom.

Remark 24.2.3 . We shall use notation such that Greek indices which do not appear in their
natural position have been raised/lowered using γαβ/γαβ . We do this just to lighten notation
a bit.

24.3 Helmholtz-Hodge

It is immensely useful to further decompose the

(a) vector field bα as
bα = DαB +Bα,

where D is the Levi-Civita covariant derivative of γ, B is a scalar field and Bα is a
divergence-free vector field, DαB

α = 0. This is known as Helmholtz Theorem, and
actually states that B and Bα are unique.
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(b) tensor field eαβ as

eαβ =

(
2D(αDβ) −

1

3
γαβ∆

)
E + 2D(αEβ) + Eαβ,

where ∆ := γαβDαDβ is the spatial Laplacian, E is a scalar field, Eα is a divergence-free
vector field, and Eαβ is a symmetric, divergence-free, DαE

αβ = 0, and trace-free tensor
field. This decomposition is also unique, and is known as Hodge Theorem.

Thus a general perturbation from a static metric uniquely decomposes into three, inde-
pendent types of perturbation:

δg = δgscalar + δgvector + δgtensor.

If we make the trivial decompositions a = A and c = C, the above formula is summarised in
the table below, where we have included some common terminology for the categories

Type of perturbation Contains Terminology

δgscalar A,B,C and E Scalars
δgvector Bα and Eα Solenoidal vector fields
δgtensor Eαβ Symmetric, TT4 tensor fields

People then say "scalar perturbations come from scalars, vector perturbations come from
solenoidal vector fields, and tensor perturbations come from symmetric, TT tensor fields."

The rational behind this distinction is that a perturbation δTab[g] on the right-hand side
which is effected only by a scalar fields will at most ‘switch on’ the scalar fields in the metric
g + δg on the left-hand side. Similarly for solenoidal and TT perturbations of the energy-
momentum tensor.

This means that if we decompose the right-hand side of our perturbed system into the
three types of contributions, we can solve each part separately and see its contribution to the
system.

Remark 24.3.1 . Note that the above decomposition only works in linear perturbation theory,
as higher order terms would contain cross terms when the decompositions are expanded out.
So we can only do the above solving independently for in linear perturbation theory.

Example 24.3.2 . For our rotating shell, the scalar perturbation is given by introducing the
mass distribution ρ, and the solenoidal perturbation is given by introducing rotation, as the
vector field associated to it is divergence free (it is essentially a curl field). We could introduce
a TT perturbation by applying pressure to the shell.

Remark 24.3.3 . It is important to consider what is fundamentally contributing to the per-
turbation. In our shell example, we might think of some vector field which causes the shell
to pulse and oscillate in size is a solenoidal vector perturbation. This is not the case as it
is not divergence-free and so is not a solenoidal vector perturbation. It is, in fact, a scalar
contribution as the required vector field can be obtained as the gradient of some scalar field,
and it is the scalar field that generates the perturbation.

Terminology . Despite the last remark, people do not often say the "solenoidal" and simply
say "vector perturbations". Similarly they just say "tensor perturbations".
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24.4 The Price Paid For The Luxury Of Working In A Chart

We have made the argument again and again that real world objects, like the metric, are
independent of which chart you choose to express them in, and that the components of these
objects can vary vastly from one chart to another.

So far we have calculated everything in the chart (U, x) and obtained some δg(x)ab. The
obvious question to ask is whether there exists another chart (U, y) such that

g(x)ab + δg(x)ab = g(y)ab?

If this is the case, we have no choice but to conclude that the metric with components
g(x)ab + δg(x)ab is precisely the metric we started with. That is, we have not actually found a
real world perturbation to the system but instead we have generated a ‘fake’ one at the chart
level.

Example 24.4.1 . Consider an infinitely extended plane. We introduce an evenly distributed
matter density across the whole plane. Newtonian theory tells us that the gravitational field
is homogeneous and just points orthogonal to the plane. However, we saw when discussing
tidal forces that in general relativity such a gravitational field can be removed by transforming
to a freely falling frame. We can therefore find a coordinate system in which the contribution
made by the matter vanishes, and so it is a ‘fake’ perturbation.

The insight into this problem is that for

(i) scalar perturbations, only two combinations of A,B,C and E

Ψ := A+ Ḃ − Ë, and Φ := C − 1

3
∆E

(ii) vector perturbations, only one combination of the Bα and Eα

Θα = Bα − Ėα

(iii) tensor perturbations all the Eαβ

are unaffected (and therefore not removable) by general coordinate transformations. They
are known as gauge invariants. They are the only ones that can be taken seriously. We will
derive these results next lecture.

This concept should be familiar from electrodynamics, where we know that the fields Aµ
themselves are not physically meaningful, but certain combinations are, for example the field
strength tensor components Fµν = ∂µAν − ∂νAµ.
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It is a fact that any small, but otherwise arbitrary, transformation of coordinates is given
by choice of vector field ξ, whose component functions w.r.t. the original chart, ξm(x), are
small. Then the change incurred by the metric components under such a small, but otherwise
arbitrary, transformation is given by1

∆ξgab =
(
Lξg

)
ab
,

where L is the Lie derivative. In other words, if the δgab takes this form it is a ‘fake’ pertur-
bation, as described at the end of last lecture. But of course we write

gab + δgab,

and so we must study how δgab itself changes if we choose a small, arbitrary ξ. If it is a fake
perturbation then we know the change in the metric components is of the above form, but
δgab is the change in the metric, and so taking a further change ξ will simply give us(

∆ξδg
)
ab

=
(
Lξg

)
ab
,

where we note that there is no δ on the right-hand side. The aim is to find which components
are fake and then work out which, if any, combinations of components cancel on the right-hand
side giving us a real perturbation.

25.1 Calculate ∆ξa, ∆ξc, ∆ξbα & ∆ξeαβ

Even though we did the decomposition in the last lecture to the capital letters (A,Bα, etc.),
it is actually cleverer to work out the change of the lower case letters first.

Our chart is (U, x) where g = dx0 ⊗ dx0 − γαβdxα ⊗ dxβ . We can decompose the vector
field ξ in this chart as

ξ = T∂0 + Lβ∂β,

where T and Lµ are scalar fields that can depend on all the chart coordinates, including x0.
We then calculate the change of δgab incurred by ξ by considering T and Lµ. We have(

∆ξδg
)
ab

=
(
Lξg

)
ab

= ξmgab,m + ξm,agmb + ξm,bgam

= Tgab,0 + Lµgab,µ + T,ag0b + Lµ,agµb + T,bga0 + Lµ,bgaµ.

1The ∆ξ here is not the Laplacian, but simply denotes the change under ξ.
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We now consider each of the components separately. Using a dot to indicate a derivative
w.r.t. x0, we have: (

∆ξδg
)

00
= 0 + 0 + Ṫ + 0 + Ṫ + 0 = 2Ṫ ,

where we have used the fact that g00 = 1 and g0α = 0.
Next we have (

∆ξδ
)

0β
= 0 + 0 + 0− L̇µγµβ + T,β + 0 = −L̇µγµβ + T,β,

where we have used g0β = 0, g00 = 1 and gαβ = −γαβ . We can then use the fact that γαβ is
independent of x0 to give us(

∆ξδ
)

0β
= T,β −

(
Lµγµβ

)
,0

= DβT − L̇β,

where Dβ is the Levi-Civita covariant derivative using γ.
Finally we have(

∆ξδg
)
αβ

= 0− Lµγαβ,µ + 0− Lµ,αγµβ + 0− Lµ,βγαµ.

We then use
Lµ,αγµβ =

(
Lµγµβ

)
α
− Lµγµβ,α

to give (
∆ξδg

)
αβ

= −2

[
L(α,β) −

1

2
Lµ
(
γµβ,α + γµα,β − γαβ,µ

)]
= −2D(αLβ),

where again Dα is the Levi-Civita covariant derivative using γ.
Using the expression for δg in terms of a, bα, c and eαβ from last lecture, we conclude that

∆ξ(2a) = 2Ṫ

∆ξ(−bα) = DαT − L̇α
∆ξ

(
− 2cγαβ − eαβ

)
= −2D(αLβ).

The first two expressions clearly tell us that

∆ξa = Ṫ , and ∆ξbα = L̇α −DαT,

but the third expression needs a little work. We contract both sides with γαβ and use γαβγαβ =
3 along with the fact that D is γ-metric compatible (so we can ‘take γ inside it’), giving

6∆ξc+ ∆ξγ
αβeαβ = 2Dα

(
γαβLβ

)
=⇒ ∆ξc =

1

3
DαL

α,

where we used the trace-free condition of eαβ . From this it follows that

∆ξeαβ = 2D(αLβ) −
2

3
DµL

µγαβ.
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25.2 Scalar Perturbations

We now wan to consider the decomposed fields, and we start with the scalar perturbations.

Claim 25.2.1 . If we consider the seemingly restricted case Lα = DαL for some scalar field L,
we actually get the same result for the scalar perturbations as if we had done it generally.

We do not prove this claim here but just use it to simplify the following.
Using the above claim and the results from last lecture we see that

∆ξA = Ṫ ,

∆ξB = L̇− T

∆ξC =
1

3
∆L

∆ξE = L,

where on the right-hand side of the C equation ∆ is the Laplacian.

Exercise

Show the above results hold.
Hint: If you’re stuck Dr. Schuller does this in the videos.a

aThere is a couple factors of 2 for the E in my notes that I think Dr. Schuller missed, but they end
up cancelling above so I get the same result for ∆ξE.

We can now use these results to show the results quoted at the end of last lecture, namely

Ψ := A+ Ḃ − Ë, and Φ := C − 1

3
∆E

are gauge invariants.

Exercise

Show that above hold.
Hint: Again this is done in the lectures.

Remark 25.2.2 . Note these results tell us that the scalars A,B,C and E can not be ‘switched
on’ independently, as the only real perturbations are given as combinations of them.

For convenience only, and precisely because the Φ and Ψ are gauge invariants, we are free
to pick any (T, Lα) we want. Such a choice is known as a gauge, and the process gauge
fixing. Again should be familiar from electromagnetism. We decide to use the gauge

T := B − Ė, and L := −E.

We choose this gauge as then

∆ξE = L =⇒ E = 0

∆ξB = L̇− T =⇒ B = 0,
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and so
Ψ = A, and Φ = C.

This is known as the longitudinal gauge. Working in this gauge, we finally get the left-hand
side for the scalar perturbations for Einsteins equations, δGab = Tab, as

δG00 = 2∆Φ

δG0α = 2DαΦ̇

δGαβ =

[
2Φ̈− 2

3
∆(Ψ + Φ)

]
γαβ +

[
D(αDβ) −

1

3
γαβ∆

]
(Ψ + Φ)

25.3 Vector Perturbations

Claim 25.3.1 . As with the scalar perturbations, it turns out we can consider the seemingly
restricted cases of

T = 0, and DαL
α = 0,

and get the full result.

Again, we do not prove this claim but just use it.
The results here are

∆ξBα = L̇α, and ∆ξEα = Lα,

and so the only gauge invariant quantities are

Θ := Bα − Ė.

We then use the vector gauge, which sets E = 0, and obtain Θα = Bα. We then obtain
the left-hand side of the vector perturbations of Einsteins equations,

δG0α =
1

2
∆Θα, and δGαβ = D(αΘ̇β).

25.4 Tensor Perturbations

Claim 25.4.1 . Once again we can consider a seemingly restricted case, this time T = 0 = Lα.

With this claim it follows trivially that

∆xiEαβ = 0,

and so all Eαβ are gauge invariants. The left-hand side equations are

δGαβ = −Ëαβ + ∆Eαβ.

Remark 25.4.2 . If we start from the exact solution Gab[g] = 0 and do not introduce any mass
(so δTab[g] = 0) we get for the tensor perturbations

−Ëαβ + ∆Eαβ = 0,

which is a wave equation. These are so-called gravitational waves. It is important to note
that this wave equation is made from gauge invariant quantities and is a real world wave, not
some ‘coordinate wave’ that can be removed by a transformation.
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The following chapters are the tutorials for the course. I haven’t included everything from
the tutorials (e.g. the definitions etc are omitted), but I have tried to include the most
helpful questions. Some of the answers to the tutorial questions have also been placed

within the main content of the lecturers as remarks etc.

26.1 Topology

26.1.1 Topologies On A Simple Set

LetM = {1, 2, 3, 4} be a set.
Question: does O1 :=

{
∅, {1}, {1, 2, 3, 4}

}
constitute a topology onM?

Solution: Check the conditions:

(i) ∅ ∈ O1 andM∈ O1.

(ii) ∅ ∩ {1} = ∅ ∈ O1, ∅ ∩ {1, 2, 3, 4} = ∅ ∈ O1 and {1} ∩ {1, 2, 3, 4} = {1} ∈ O1.

(iii) ∅∪{1} = {1} ∈ O1, ∅∪{1, 2, 3, 4} = {1, 2, 3, 4} ∈ O1, {1}∪{1, 2, 3, 4} = {1, 2, 3, 4} ∈ O1

and ∅ ∪ {1} ∪ {1, 2, 3, 4} = {1, 2, 3, 4} ∈ O1.

So the answer is yes.

Question: What about O2 :=
{
∅, {1}, {2}, {1, 2, 3, 4}

}
.

Solution: The only new addition is {2} so just need to check its involvement. We see
straight away that {1} ∪ {2} = {1, 2} /∈ O2 and so we conclude that it is not a topology.

26.1.2 Continuous Functions

Question: LetM = {1, 2, 3, 4} and consider the identity map idM :M→M defined
by

idM(1) = 1, idM(2) = 2, idM(3) = 3, idM(4) = 4.

Is the map idM continuous if the domain is equipped with the chaotic topology and
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the target with the topology Otarget :=
{
∅, {1}, {1, 2, 3, 4}

}
?

Solution: The chaotic topology here is

Ochaotic =
{
∅, {1, 2, 3, 4}

}
.

We see straight away that the preimage of {1} ∈ Otarget is {1} which is not in Ochaotic, and
so the map is not continuous w.r.t. these topologies.

Question: Consider the inverse id−1
M : M→M of the identity map idM, such that

now the target is equipped with the chaotic topology and the domain with the topology{
∅, {1}, {1, 2, 3, 4}

}
.

Provide the values of the map id−1
M and decide whether id−1

M is continuous!

Solution:
id−1
M(1) = 1, id−1

M(2) = 2, id−1
M(3) = 3, id−1

M(4) = 4

Now consider the preimages.

preimid−1
M

(∅) = ∅, and preimid−1
M

({1, 2, 3, 4}) = {1, 2, 3, 4} =M,

both of which are in our domain’s topology. Therefore the map is continuous w.r.t. to these
topologies.

26.1.3 The Standard Topology On Rd

I have not included question 4 here because it would be too much drawing on Tikz for
me... however the questions are worth looking at, so if you haven’t already go watch
the video.

26.2 Topological Manifolds

26.2.1 An Atlas From A Real World — the Möbius river

Question: Consider a Möbius stripa with a river drawn along it. How many charts
do you need to cover the Möbius strip?
Draw an image of the river and Möbius strip under the chat map(s)!

aPlease Google it if you don’t know what it is.

Solution: The Möbius strip can be represented by the following diagram

https://www.youtube.com/watch?v=_XkhZQ-hNLs&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL
https://www.youtube.com/watch?v=_XkhZQ-hNLs&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL
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where the arrows indicate how we identify the two edges together (i.e. the bottom right corner
goes to the top left corner). The blue line is the river. It is clear that we will need at least
two charts in order to map the whole strip. We could choose them as follows

U1

U1 U2

We then define maps from these shaded regions into R2. For example we can just map them
so that they are the shaded regions on the page, taking care to region the two parts of U1

properly. To save my writing more Tikz code, I’ll leave this to your imagination.

26.2.2 A Real World From An Atlas

This is worth watching on the video, but would be way too hard for me to do on here.
So please go watch the video for this one.

26.2.3 Before The Invention Of The Wheel

Consider the set F 1 := {(m,n) ∈ R2 |m4+n4 = 1} of pairs of real numbers (m,n). Let
it be equipped with the topology subset topology Os|F 1 inherited from the standard
topology on R2.
Question: We look at a map x : F 1 → R that maps a pair in F 1 to the first entry in
the pair. Write this in formal mathematical terms! Is the map injective?

Solution: The map is x : F 1 → [−1, 1] given by x : (m,n) 7→ m. Clearly this map is not
injective as x

(
(m,n)

)
= x

(
(m,n′)

)
where n′ = −n.

Question: This map may be made injective by restricting its domain to either of two
maximal open subsets of F 1. Which ones? Call them x↑ and x↓.

Solution: The problem was that n′ = −n gave non-injectivity, so clearly we define

U↑ := {(m,n) ∈ R2 |m4 + n4 = 1, n > 0}
U↓ := {(m,n) ∈ R2 |m4 + n4 = 1, n < 0}

https://www.youtube.com/watch?v=ghfEQ3u_B6g&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL&index=2
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and so have the maps

x↑ : U↑ → (−1, 1), and x↓ : U↓ → (−1, 1).

It is important that we take the inequalities for n (i.e. n 6= 0) so that our sets are open, as
required by the question.

Question: Now, construct an injective map y↑ : F 1 → R that maps every pair in a
maximal open subset of F 1 to the second entry of the pair.

Solution: Same as above we simply define

V↑ := {(m,n) ∈ R2 |m4 + n4 = 1,m > 0},

and the map
y↑ : V↑ → (−1, 1),

given by y↑ : (m,n) 7→ n.

Question: Is y↑ invertible? If so, construct y−1
↑ !

Solution: Yes it is invertible as it is bijective. We construct the inverse as

y−1
↑ : (−1, 1)→ V↑,

where the action is given by
y−1
↑ : n 7→

( 4
√

1− n4, n
)
.

Question: Do the domains of the maps x↑ and y↑ overlap? If so, construct the
transition map x↑ ◦ y−1

↑ and specify its domain and target.

Solution: Yes their domains overlap as

U↑ ∩ V↑ = {(m,n) ∈ R2 |m4 + n4 = 1, n,m > 0}

The transition map is (
x↑ ◦ y−1

↑
)

: (0, 1)→ (0, 1)

with (
x↑ ◦ y−1

↑
)
(a) = x↑

( 4
√

1− a4, a
)

=
4
√

1− a4 ∈ (0, 1).

Question: How many maps (constructed this way) do you need for their domains to
cover the whole of F 1? Does the collection of these domains and maps form an atlas
on F 1?

Solution: The answer is obviously 4 maps, x↑, x↓, y↑ and y↓, and yes they form an atlas.
From this we see that F 1 is a topological manifold of dimension d = 1.
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26.3 Multilinear Algebra

26.3.1 Vector Spaces

Let V := R3 be the set of all real triples.
Question: We equip V with addition ⊕ : V × V → V and s-multiplication � :
R× V → V defined by

(a, b, c)⊕ (d, e, f) := (a+ d, b+ e, c+ f)

and
λ� (a, b, c) := (λ · a, λ · b, λ · c)

where + and · are the addition and multiplication on R. Check that (V,⊕,�) is a
vector space.

Solution: We need to check it meets the 8 axioms.

(i) Commutative w.r.t. ⊕:

(a, b, c)⊕ (d, e, f) = (a+ d, b+ e, c+ f) = (d+ a, b+ e, f + c) = (d, e, f)⊕ (a, b, c).

(ii) Associative w.r.t. ⊕:[
(a, b, c)⊕ (d, e, f)

]
⊕ (h, i, j) = (a+ d, b+ e, c+ f)⊕ (h, i, j)

= (a+ d+ h, b+ e+ i, c+ f + j)

= (a, b, c)⊕ (d+ h, e+ i, f + j)

= (a, b, c)⊕
[
(d, e, f)⊕ (h, i, j)

]
.

(iii) Neutral element w.r.t. ⊕: this is clearly just (0, 0, 0).

(iv) Inverse w.r.t. ⊕: this is clearly just (−a,−b,−c). Note for this to be true it is important
that we take the whole real line, not just the positive reals (otherwise (−a,−b,−c) /∈ V .

(v) Associative w.r.t. �:

λ�
[
µ� (a, b, c)

]
= λ� (µ · a, µ · b, µ · c)
= (λ� µ · a, λ� µ · b, λ� µ · c)
=
[
λ� µ]� (a, b, c).

(vi) Distributive 1:

(λ+ µ)� (a, b, c) =
(
(λ+ µ) · a, (λ+ µ) · b, (λ+ µ) · c

)
= (λ · a, λ · b, λ · c)⊕ (µ · a, µ · b, µ · c)
= λ� (a, b, c)⊕ µ� (a, b, c).
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(vii) Distributive 2:

λ�
[
(a, b, c)⊕ (d, e, f)

]
= λ� (a+ d, b+ e, c+ f)

=
(
λ · (a+ d), λ · (b+ e), λ · (c+ f)

)
= (λ · a, λ · b, λ · c) + (λ · d, λ · e, λ · f)

= λ� (a, b, c)⊕ λ� (d, e, f).

(viii) Unitary w.r.t. �: Clearly 1� (a, b, c) = (a, b, c).

Question: Consider the map d : V → V ; (a, b, c) 7→ d
(
(a, b, c)

)
:= (b, 2c, 0).

Is d linear?

Solution: Consider

d
(
λ� (a, b, c)⊕ (d, e, f)

)
= d
(
([λ · a] + d, [λ · b] + e, [λ · c] + f)

)
= ([λ · b] + e, 2[λ · c] + 2f, 0)

= λ� (b, 2c, 0)⊕ (e, 2f)

= λ� d
(
(a, b, c)

)
⊕ d
(
(d, e, f)

)
,

soyesit′slinear.

Question: Show that the map d ◦ d is linear.

Solution: This follows immediately from Theorem 3.2.2, however if you want you can
show it explicitly (we won’t here to save me writing.)

Question: Consider the map

i : V → R; (a, b, c) 7→ i
(
(a, b, c)

)
:= a+

1

2
b+

1

3
c.

Check linearity. Of what set is i an element?

Solution: The linearity calculation is exactly the same method as above, so to save me
typing I’m just going to say the answer: yes it is. Being a linear map from V to R it is, by
definition, an element of V ∗.

Question: Another (multi)linear question. Again I don’t want to keep typing out
that check so see the video for this one.

Question: Compare the above map d : V → V with the map δ : P → P from the
lecture and construct a bijective linear map j : P2 → R3 such that

d = j ◦ δ ◦ j−1.

https://www.youtube.com/watch?v=5oeWX3NUhMA&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL&index=3
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Solution: Recall that δ : P → P is defined as the derivative, i.e. δ(p) = p′. Clearly for
this question we want to focus on the map δ : P2 → P2. Recall the definition

P2 := {p : R→ R | p(x) = a+ bx+ cx2},

and so we have
p′(x) = b+ 2cx+ 0x2.

We instantly see this resembles the map d : V → V which acts as d
(
(a, b, c)

)
:= (b, 2c, 0). We

just need to construct the map j : P2 → R3. With a bit of thought it is clear that the answer
is simply

j(p) := (a, b, c),

where p = a+ bx+ cx2. The inverse map j−1 : R3 → P2 is then simply given by(
j−1(a, b, c)

)
(x) := a+ bx+ cx2.

Direct substitution then gives(
(j ◦ δ ◦ j−1

)
(a, b, c) := (b, 2c, 0) =: d

(
(a, b, c)

)
.

Similar exercises can be done to compare i : V → R to I : P → R given in the lecture
(and also for the above exercise which I haven’t typed here.) See the video for more details.

26.3.2 Indices

Let V be a d-dimensional vector space. Consider two maps A and B, where

A : V ∗ × V ∗ → R

B : V × V → R.

V has a basis e1, ..., ed and V ∗ has the basis ε1, ..., εd.
Question: Define the components Aab of A and Bab of B with respect to the given
bases.

Solution: We simply uses the duality of the basis elements, namely ei(εj) = δji = εj(ei).
So we have

Aab = A(εa, εb), and Bab = B(ea, eb).

Question: We define A[ab] := 1
2

(
Aab −Aba

)
. Show that

A[ab] = −A[ba]

and also
A[ab]Bab = AabB[ab].

https://www.youtube.com/watch?v=5oeWX3NUhMA&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL&index=3
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Solution: From direct calculation we have

A[ab] :=
1

2

(
Aab −Aba

)
= −1

2

(
Aba −Aab

)
=: −A[ba].

We also have

A[ab]Bab :=
1

2

(
Aab −Aba

)
Bab

=
1

2

(
AabBab −AbaBab

)
=

1

2

(
AabBab −AabBba

)
= Aab

1

2

(
Bab −Bba

)
=: AabB[ab],

where we have used the Einstein summation convention to relabel the dummy indices of the
second term to get to the third line.

Question: We additionally define B(ab) := 1
2

(
Bab +Bba

)
. Now, show that

B(ab) = B(ba)

and again
AabB(ab) = A(ab)Bab.

Solution: Follows exactly like the previous solution.

Question: Using the results from the previous questions, we can easily show

A[ab]B(ab) = 0,

i.e., the summation (contraction) of symmetric and antisymmetric indices yields zero.

Solution: We have

A[ab]B(ab) :=
1

2

(
AabB(ab) −AbaB(ab)

)
=

1

2

(
A(ab)Bab −A(ba)Bab

)
=

1

2

(
A(ab)Bab −A(ab)Bab

)
= 0.
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26.3.3 Linear Maps As Tensors

Question: Given a vector space V and a linear map φ : V ∗
∼−→ V ∗ construct a

(1, 1)-tensor Tφ.

Solution: We know a (1, 1)-tensor is a linear map Tφ : V ∗ × V ∼−→ R. We also know that
ψ ∈ V ∗ is a map ψ : V

∼−→ R. So it’s clear that we just define

Tφ(σ, v) :=
(
φ(σ)

)
(v),

where σ ∈ V ∗ and v ∈ V .

Question: Given a (1, 1)-tensor T : V ∗ × V ∼−→ R, construct a linear map φT : V ∗
∼−→

V ∗.

Solution: This is just the previous exercise in reverse. That is we define(
φT (σ)

)
(v) := T (σ, v),

which we write as
φT (σ) := T (σ, ·).

Question: Show that

(a) TφT = T , and

(b) φTφ = φ.

Solution:

(a) We have
TφT (σ, v) :=

(
φT (σ)

)
(v) =: T (σ, v).

(b) We have (
φTφ(σ)

)
(v) := Tφ(σ, v) =:

(
φ(σ)

(
v),

and so φTφ = φ.

Question: Conclude that we can consider a linear map φ : V ∗
∼−→ V ∗ as a (1, 1)-tensor.

Solution: The above exercises have just shown us that there is a unique link between T
and φ and so we can think of them as being isomorphic as maps and as such can be viewed
as the same object.

26.4 Differential Manifolds

26.4.1 Restricting The Atlas
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Let (R,Ostandard) be a topological space. Let it be further equipped with an atlas
A = {(R, x), (R, y)} where x : R→ R; a 7→ x(a) = a and y : R→ R; a 7→ y(a) = a3.
Question: Construct the chart transition map y ◦ x−1 : R→ R and give its differen-
tiability class.

Solution: We have x−1 : R→ R; a 7→ x−1(a) = a, and so y ◦ x−1 : R→ R; a 7→ a3. This
is C∞(R).

Question: Also construct the chart transition map x◦y−1 : R→ R. Is (R,Ostandard,A)
a differentiable manifold?

Solution: We have x ◦ y−1 : R → R; a 7→ 3
√
a, but this function is not even C1(R → R)

as the first derivative is 1
3a
−2/3, which blows up as a → 0. So no it is not a differentiable

manifold.

Question: Restrict the atlas A to an atlas Ã in order to make (R,Ostandard, Ã) a
smooth manifold.

Solution: The problem above came from the chart transition maps. Both chart maps
themselves are C∞(R→ R) and their domain is the whole manifold (namley R) and so if we
just remove one of the two charts we get a smooth manifold.

26.4.2 Soft Squares on R× R

Let M = R × R equipped with the soft square topology Ossq and an atlas A =
{(Un, xn)}, where Un = {(x, y) ∈ R× R | |x| < n, |y| < n, n ∈ N+} and

xn : Un → xn(Un) ⊂ R2; (x, y) 7→ xn
(
(x, y)

)
:=

(
x+ y

2n
,
x− y

2n

)
.

Question: Recall the definition of a chart and show that the (Un, xn) are indeed
charts.

Solution: For (Un, xn) to be charts, we need to show that Un ∈ Ossq and that the xns
are homeomorphisms (i.e. inevitable and continuous).

The soft square topology is rather self explanatory, it is the set of squares around the
origin without the boundary. This is exactly the definition of the Uns where the sides of
consecutive Un increase by 2n. So we have Un ∈ Ossq.

Next we need to show that the chart maps are homeomorphisms. It is clear that xn
is continuous w.r.t. Ossq and Ostandard. So we just need to check that x−1

n exists and is
continuous. We have

x−1
n (a, b) =

(
n(a+ b), n(a− b)

)
,

which is again clearly continuous.
Therefore we know that the (Un, xn) are indeed charts.
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Question: Show that A is a Ck-atlas by explicitly constructing the chart transition
maps. What is k?

Solution: The chart transition maps are given by

xm ◦ x−1
n : xn(Un ∩ Um)→ xm(Un ∩ Um)

(a, b) 7→
(
na

m
,
nb

m

)
=

n

m
(a, b).

This tells us that xm ◦ x−1
n = n

m1R2 , which together with m 6= 0 tells us k =∞.

Question: Construct at least one other chart that would lie in the maximal extension
of A and prove that it does.

Solution: There are many, but we could take the map x̃ : U5 → Ũ5 ⊂ R2; (a, b) 7→ (a, b),
i.e. it is the identity map restricted to U5. It is clear that this will be C∞ compatible with
any overlapping charts and so it lies in the atlas.

26.4.3 Undergraduate Multi-Dimensional Analysis

Question: There is a question about calculating partial derivatives. I am not includ-
ing it here as its fairly straight forward.

26.4.4 Differentiability On A Manifold

Question: There is a question about drawing a diagram to show a bunch of different
spaces and maps. It will take a while to draw in Tikz and there are plenty examples
in the notes themselves, so I haven’t included it here. This is followed by a calculation
of a derivative of a map, it is worth seeing this exercise, so please the video.

26.5 Tangent Spaces

26.5.1 Virtuoso Use Of The Symbol
(
∂
∂xi

)
p

Question: Show that, for overlapping charts (U, x) and (V, y), one has(
∂xa

∂ym

)
p

(
∂ym

∂xb

)
p

= δab

for any p ∈ U ∩ V .

https://www.youtube.com/watch?v=FXPdKxOq1KA&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL&index=4
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Solution: We have

δab =

(
∂

∂xb

)
p

(xa)

:= ∂b
(
xa ◦ x−1

)(
x(p)

)
= ∂b

(
xa ◦ (y−1 ◦ y) ◦ x−1

)(
x(p)

)
= ∂b

(
(xa ◦ y−1) ◦ (y ◦ x−1)

)(
x(p)

)
= ∂b

(
ym ◦ x−1

)(
x(p)

)
· ∂m

(
xa ◦ y−1

)(
y(p)

)
=:

(
∂ym

∂xb

)
p

(
∂xa

∂ym

)
p

,

where we have inserted the identity, used the associativity of the composition of maps, and
the multidimensional chain rule along with

(
y ◦ x−1

)(
x(p)

)
= y(p).

Question: After inserting y−1 ◦ y, where y is another chart map on the same chart
domain U , at the appropriate position in the definition of the left hand side of(

∂f

∂xi

)
p

=

(
∂ym

∂xi

)
p

(
∂f

∂ym

)
p

,

use the multidimensional chain rule to show that it equals the right-hand side.

Solution: This follows in a similar manner to the previous question and so I won’t type
it here.

Question: Do the dimM many quantities defined by the left-hand side of the above
expression constitute the components of a tensor? If so, what is the valence and rank
of the tensor?

Solution: The above expression is clearly of the form of

T(x)i(p) =

(
∂ym

∂xi

)
p

T(y)m(p),

which is the transformation law for the components of a (0, 1)-tensor. So the answer is "yes"
and the valence is (0, 1) and the rank is 1.

26.5.2 Transformation Of Vector Components

Let the topological space (R2,Ost.) be equipped with the atlas A = {(R2, x), (R2, y)},
where

x : (a, b) 7→ (a, b) and y : (a, b) 7→ (a, b+ a3).

Question: Calculate the objects
(
∂xi

∂yj

)
p
!
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Solution: We have
(
x ◦ y−1

)(
(u, v)

)
= (u, v − u3), and so direct calculation gives(

∂x1

∂y1

)
p

:= ∂1

(
x1 ◦ y−1

)(
y(p)

)
= 1,

where we have used ∂1

(
x◦y−1

)(
(u, v)

)
= 1, irrespective of the value u takes.

Next we have,(
∂x2

∂y1

)
p

:= ∂1

(
x2 ◦ y−1

)(
y(p)

)
= ∂1

(
x2 ◦ y−1

)(
(a, b+ a3)

)
= −3a2,

where we have used ∂2

(
x1 ◦ y−1

)(
(u, v)

)
= −2u2 along with p = (a, b).

Similar calculations give(
∂x1

∂y2

)
p

= 0, and
(
∂x2

∂y2

)
p

= 1

(Reworded slightly to save typing) Recall that the components of the velocity to a
curve γ in a chart (U, x) at point p = γ(λ0) are given by

γ̇ix(λ0) :=
(
x ◦ γ)i′(λ0).

Now consider the curve
γ : R→ R2; λ 7→ (λ,−λ).

Question: Calculate the components γ̇ix(λ0) and γ̇iy(λ0)!

Solution: We have (x ◦ γ)(λ) = (λ,−λ) and (y ◦ γ)(λ) = (λ,−λ+ λ3), so we have

γ̇1
x(λ0) :=

(
x ◦ γ)1′(λ0) = 1,

γ̇2
x(λ0) :=

(
x ◦ γ)2′(λ0) = −1,

γ̇1
y(λ0) :=

(
y ◦ γ)1′(λ0) = 1,

γ̇2
y(λ0) :=

(
x ◦ γ)2′(λ0) = −1 + 3λ2

0.

Question: With the above results in mind, how could you have obtained the compo-
nents of γ̇ix(λ0) from the γ̇iy(λ0)?

Solution: The answer is clearly to just use the transformation property

γ̇ix(λ0) =

(
∂xi

∂ym

)
p

γ̇my (λ0).

That is, we have

γ̇1
x(λ0) =

(
∂x1

∂y1

)
p

γ̇1
y(λ0) +

(
∂x1

∂y2

)
p

γ̇2
y(λ0)

= 1 · 1 + 0 · (−1 + 3λ0)2

= 1,
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and

γ̇2
x(λ0) =

(
∂x2

∂y1

)
p

γ̇1
y(λ0) +

(
∂x2

∂y2

)
p

γ̇2
y(λ0)

= −3λ2
0 · 1 + 1 · (−1 + 3λ2

0)

= −1.

26.5.3 The Gradient

Given a function f on a manifold M, the level sets of f for a constant c ∈ R are
defined as

Nc(f) := {p ∈M| f(p) = c}.

Question: Formulate the condition for a curve γ : R → M to take values solely in
one of the level sets of a function f !

Solution: Clearly we just want (f ◦ γ)(λ) = c for all λ ∈ R. We can formulate this as
f ◦ γ being equivalent to the constant function, which simply obeys the above property.

Question: Now show that the gradient of the function annihilates the velocity vector
vγ,p for any such γ through p in Nc(f). In other words, show that

(df)p(vγ,p) = 0.

Solution: We have

(df)p(vγ,p) := vγ,p(f) :=
(
f ◦ γ)′(λ0) = 0,

as the derivative of a constant vanishes.

26.5.4 Is There A Well-Defined Sum Of Curves?

Let the topological manifold (R2,Ost.) be equipped with the atlas A =
{(R2, x), (R2, y)} where

x : (a, b) 7→ (a, b) and y : (a, b) 7→ (a, b · ea).

Question: Is A a C∞-atlas?

Solution: We need to construct the chart transition maps

(x ◦ y−1)(u, v) = x
(
(u, v · e−u)

)
= (u, v · e−u)

(y ◦ x−1)(u, v) = y
(
(u, v)

)
= (u, v · eu).

These are both infinitely times continuously differentiable and so the answer is "yes".
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Question: On our R2 above, consider two curves γ, δ : R→ R2 given by

γ : λ 7→ (λ, 1), and δ : λ 7→ (1, λ).

Without referring to any chart, can you give the sum γ + δ of these curves?

Solution: The answer is "no" because our manifold is just the set R2 (with a topology)
and so carries no vector space structure so we cannot talk about the addition on R2.

Question: Calculate the representatives of both curves with respect to both charts.
Illustrate the results. Where do the curves in the charts intersect?

Solution: First consider the x chart. We have

(x ◦ γ)(λ) = (λ, 1), and (x ◦ δ)(λ) = (1, λ).

In the y chart we have

(y ◦ γ)(λ) = (λ, eλ), and (y ◦ δ)(λ) = (1, λ · e)

The illustrations are as follows

x1

x2

γ

δ

y1

y2

γ
δ

The intersection points are (1, 1) in the x chart and (1, e) in the y chart. These both
correspond to λ = 1, which it must from the definition of the curves.

(Reworded to save typing) Question: Use the formula from the lectures

σx : R→ U ; λ 7→ x−1
(
(x ◦ γ)(λ+ λ0) + (x ◦ δ)(λ+ λ1)− (x ◦ γ)(λ0)

)
,

where γ(λ0) = δ(λ1), to find the sum γ + δ. Also do the calculation for σy(λ).

Solution: Using the previous question, direct calculation gives: for the x chart

σx(λ) = x−1
(
(λ+ 1, 1) + (1, λ+ 1)− (1, 1)

)
= x−1(λ+ 1, λ+ 1)

= (λ+ 1, λ+ 1).
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The calculation i the y chart gives

σy(λ) = (λ+ 1, 1 + λ · e−λ).

Question: Show that – desipite the above results – the velocity of σx and the velocity
σy are equal at the intersection point.

Solution: The intersection point is (1, 1) in x and so we require λ = 0. Using this, we
have

σ̇1
(x)x = 1 and σ̇2

(x)x = 1,

as both are just the derivative w.r.t. λ of λ+ 1.
In the y chart we have (note we use the x chart in to find these components in order to

compare it to the above ones)

σ̇1
(x)y = 1 and σ̇2

(x)y = 1 · e0 − 0 · e0 = 1.

So we have
vσx,(1,1) = σ̇i(x)x

(
∂

∂xi

)
p

= σ̇i(x)y

(
∂

∂xi

)
p

= vσy ,(1,1).

26.6 Fields

26.6.1 Vector Fields For Practitioners

Question: Let (U, x) be a chart of a smooth a smooth manifold (M,O,A). Explain
why the map

∂

∂xi
: U → TU ; p 7→

(
∂

∂xi

)
p

is a vector field on U .

Solution: We need to check that it is a section. That is π ◦ ∂
∂xi

= 1M. This is clearly
true as π : TpM→M is defied as

π :

(
∂

∂xi

)
p

7→ p.

We now need to check if this section is smooth. If we denote the chart map on TU as ξx, that
is we need to check that

ξx ◦
∂

∂xi
◦ x−1 : x(U)→ ξ(TU)

is smooth. Recalling the definition of ξx, and using the fact that the only non-vanishing
component of ∂

∂xi
is the ith entry, we have(
ξx ◦

∂

∂xi
◦ x−1

)
(α1, ..., αd) = (α1, ..., αd, 0, ..., 1, ..., 0),

where the 1 appears at the (d + i)th entry. This is clearly smooth (w.r.t. the standard
topologies on Rd and R2d), and so ∂

∂xi
is a vector field on U .
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26.6.2 The Cotangent Bundle T ∗M π−→M

We consider the cotangent bundle total space T ∗M as the disjoint union

T ∗M :=
•⋃

p∈M
T ∗pM

of all cotangent spaces and define the bundle projection map

π : T ∗M→M
ω 7→ the unique p with ω ∈ T ∗pM.

Question: Show that

OT ∗M := {preimπ(U) |U ∈ OM}

defines a topology on T ∗M.

Solution: We check the three conditions for a topology in the order given in the definition.

(i) We have
preimπ(∅) = ∅, and preimπ(M) = T ∗M,

and so ∅, T ∗M∈ OT ∗M.

(ii) This just follows from properties of the preimage, namely

preimf (U ∩ V ) = preimf (U) ∩ preimf (V ).

(iii) This just follows from another property of the preimage, namely⋃
i

preimf (Ui) = preimf

(⋃
i

Ui

)
.

The rest of this tutorial is basically the same calculations as the ones in the lecture.
Specifically find the components of ξ∗x, its inverse and showing that the chart transition
maps are smooth.
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26.7 Connections

26.7.1 Practical Rules For How ∇ Acts

Question: What is the result of the following applications of a torsion free covariant
derivative?

• There are some others in the video, but they are basically covered in the lectures
so I won’t repeat them here.

•
(
∇[mA

)
n]
,

•
(
∇[mω

)
nr]

.

Solution: We have(
∇[mA

)
n]

:=
1

2

[(
∇mA

)
n
−
(
∇nA

)
m

]
=

1

2

(
An,m − ΓrnmAr −Am,n + ΓrmnAr

)
= A[n,m] + Γr [mn]

=
1

2
Fmn,

where we have used the fact that ∇ is torsion free and so Γa[bc] = 0.
Next, we have(
∇[mω

)
nr]

=
1

3!

[(
∇mω

)
nr
−
(
∇mω

)
rn

+
(
∇rω

)
mn
−
(
∇rω

)
nm

+
(
∇nω

)
rm
−
(
∇nω

)
mr

]
.

If we expand this out we will see that the Γs all cancel, e.g.(
∇mω

)
nr
−
(
∇nω

)
mr

= ωnr,m − Γsnmωsr − Γsrmωns − ωmr,n + Γsmnωsr + Γsrnωms

= ωnr,m − ωmr,n + 2Γs[mn]ωsr + 2Γsr[nωm]s

= ωnr,m − ωmr,n + 2Γsr[nωm]s,

and the other Γ will cancel with another term’s expansion. We are therefore left with(
∇[mω

)
nr]

= ω[nr,m].

26.7.2 Connection Coefficients

There is a question about stating the chart transformation laws of the Γs and stating
which class of transformations make the Γs look like tensors. We have discussed
this in the notes already, but I have but this box here to remind readers to re-read
Remark 7.3.1 as it’s an important point often missed.
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Question: Let (M,O,A,∇) be the flat plane. Consider two charts that both cover
the upper half plane, that is all the points (a, b) ∈ R2 with b > 0, one representing the
familiar Cartesian coordinates and the other the familiar polar coordinates on there.
We already know the chart transition map from Cartesian to polar coordinates is given
by

y ◦ x−1(a, b) =

(√
a2 + b2, arccos

(
a√

a2 + b2

))
,

while the inverse transition map from polar to Cartesian is given by

x ◦ y−1(r, ϕ) =
(
r cosϕ, r sinϕ), for r ∈ R+ and ϕ ∈ (0, π).

Starting from the assumption of vanishing connection coefficient functions in the
Cartesian chart, calculate the connection coefficient functions Γa(y)bc w.r.t. the po-
lar chart!

Solution: Recall that the transformation law is

Γa(y)bc =
∂ya

∂xk
∂2xk

∂yb∂yc
+
∂ya

∂xk
∂xn

∂yb
∂xm

∂yc
Γk(x)mn.

The assumption is Γq(x)sp = 0, and so we just need to find the first term. We have

(
∂xk

∂yc

)
y−1(r,ϕ)

:= ∂c
(
xk ◦ y−1

)
(r, ϕ) =

(
cosϕ −r sinϕ
sinϕ r cosϕ

)k
c

.

Now, using the first question in the tangent spaces tutorial above, we have(
∂ya

∂xk

)
p

=

(
∂xk

∂ya

)−1

=
1

r

(
r cosϕ r sinϕ
− sinϕ cosϕ

)k
a

=

(
cosϕ sinϕ
−1
r sinϕ 1

r cosϕ

)k
a

,
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where we have used the fact that the determinant of the first matrix is r. We can also calculate(
∂2x1

∂y1∂y1

)
y−1(r,ϕ)

= 0(
∂2x1

∂y2∂y1

)
y−1(r,ϕ)

= − sinϕ(
∂2x1

∂y1∂y2

)
y−1(r,ϕ)

= − sinϕ(
∂2x1

∂y2∂y2

)
y−1(r,ϕ)

= −r cosϕ(
∂2x2

∂y1∂y1

)
y−1(r,ϕ)

= 0(
∂2x2

∂y2∂y1

)
y−1(r,ϕ)

= cosϕ(
∂2x2

∂y2∂y2

)
y−1(r,ϕ)

= −r sinϕ.

We then simply have to pick the relevant expressions to find the Γa(y)bcs. For example

Γ1
(y)11 =

∂y1

∂x1

∂2x1

∂y1∂y1
+
∂y1

∂x2

∂2x2

∂y1∂y1
= 0,

and

Γ1
(y)22 =

∂y1

∂x1

∂2x1

∂y2∂y2
+
∂y1

∂x2

∂2x2

∂y2∂y2

= cosϕ(−r cosϕ) + sinϕ(−r sinϕ)

= −r(cos2 ϕ+ sin2 ϕ)

= −r.

26.8 Parallel Transport and Curvature

26.8.1 Where Connection Coefficients Appear

Question: Determine the coefficients of the Riemann tensor with respect to a chart
(U, x) in terms of the connection coefficient functions.

Solution: Recall the definition

Riem(ω,Z,X, Y ) := ω :
(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
.
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We have already seen1 that Riem is C∞-linear in all its entries and so we can just consider
basis elements. That is, we can set (using the notation ∂j := ∂

∂xj
)

ω = dxi, Z = ∂j , X = ∂k, and Y = ∂m.

So we have

Riem(dxi, ∂j , ∂k, ∂m) := dxi :
(
∇k∇m∂j −∇m∇k∂j −∇[∂k,∂m]∂j

)
= dxi :

[
∇k
(
Γr(x)jm∂r

)
−∇m

(
Γr(x)jk∂r

)]
= dxi :

[
Γr(x)jm,k∂r + Γr(x)jmΓs(x)rk∂s − Γr(x)jk,m∂r − Γr(x)jkΓ

s
(x)rm∂s

]
Riemi

jkm = Γi(x)jm,k − Γi(x)jk,m + Γr(x)jmΓi(x)rk − Γr(x)jkΓ
i
(x)rm.

We can see the antisymmetry in the last two entries immediatley from the above. That is
Riemi

jkm = −Riemi
jmk.

Question: Does a one-dimensional manifold with connection have curvature? Why?

Solution: No, as if it is one-dimensional we only have one Γ, namely Γ1
11, and if we put

this into the above definition, all the only component Riem1
111 vanishes and so there is no

curvature.
Geometrically this makes sense if we think about embedding the one-dimensional manifold

into a higher dimensional space. We can always ‘pull’ the one-dimensional manifold straight
and thus show that it has no intrinsic curvature.

26.8.2 The Round Sphere

There is a question about finding the components of Riem for given Γs. I am not
going to write it here to save myself time, but I recommend at least watching the
video (available here, for some reason this video is not on YouTube) for a worked
calculation.

26.8.3 How Not To Define Parallel Transport

Question: Hänschen defines two vectors X ∈ TpM and Y ∈ TqM as parallel if

Xi
(x) = Y i

(x)

with respect to some chart (U, x) whose domain U contains both p and q.
Prove that this notion of parallelity is ill-defined!

1Or more correctly, you have shown as an exercise in Lecture 8.

https://gravity-and-light.herokuapp.com/tutorials
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Solution: Consider the transformation to another chart with the same domain (U, y),

Xi
(y) =

(
∂yi

∂xj

)
p

Xj
(x) =

(
∂yi

∂xj

)
p

Y j
(x) =

(
∂yi

∂xj

)
p

(
∂xj

∂yk

)
q

Y k
(y),

but because p 6= q we cannot, in general, use(
∂yi

∂xj

)
p

(
∂xj

∂yk

)
q

= δik,

and so
Xi

(y) 6= Y i
(y).

There is then a diagram to show how the above definition of parallelity fails for parallel
(as defined in the lecture) vectors around a circle when considered in the Cartesian
chart and the polar chart.
To save myself time I have not drawn the diagrams here, but if you can’t picture the
images in your head, again go see the video!

26.10 Metric Manifolds

26.10.1 Recognising & Dealing With Different Signatures

Question: (reworded) State the possible signatures of a metric g for the following set
of g-null vectors:

(i) A cone through the origin,

(ii) A point at the origin,

(iii) A straight line through the origin, and

(iv) A plane through the origin,

where the origin is the origin of the vector space, namely the point p ∈ M that we
are tangent to.

Solution: W.l.o.g. let’s assume the vector space is 3-dimensional and introduce a basis
{e1, e2, e3}. The relevant equations giving the correct surfaces are

(i) g(X,X) = −(X1)2 +(X2)2 +(X3)2 = 0, so we have (−,+,+), or equivalently (+,−,−).

(ii) g(X,X) = 0 only for the zero vector, and so we need (+,+,+) or (−,−,−).

(iii) From the above case, we just need to have one of the entries to be 0, i.e. (0,+,+)/(0,−,−),
as then all vectors with only an e1 component are null.

(iv) Extending the previous case, we have (0, 0,+)/(0, 0−).
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26.10.2 Levi-Civita Connection

Question: Expand in terms of connection coefficient functions

(i)
(
∇ag

)
bc
,

(ii)
(
∇bg

)
ca
,

(iii)
(
∇cg

)
ab
.

Solution: We just do the first one, as the other two are obtained by simply relabeling
the indices. We have (

∇ag
)
bc

= gbc,a − Γmbagmc − Γmcagbm.

Question: By adding and/or subtracting (i), (ii) and (iii) above in a clever way,
obtain

Γabc =
1

2

(
g−1
)am(

gmc,b + gmb,c − gbc,m
)

and conclude that ∇g = 0 and T = 0 (torsion) uniquely determine the connection
coefficient functions in terms of the metric.

Solution: Consider (i)+(ii)-(iii),

gbc,a − Γmbagmc − Γmcagbm + gca,b − Γmcbgma − Γmabgcm − gab,c + Γmacgmb + Γmbcgam.

Now if we consider a metric compatible connection and vanishing torsion, we have that the
above vanishes (as each of (i), (ii) and (iii) vanish themselves) and that the Γs are symmetric
in the lower two indices. Also using the fact that the metric is symmetric, we have

0 = gbc,a + gac,b − gab,c − 2Γmbagmc,

which after rearranging and using gmcg−1)cn = δnm we have

Γnba =
1

2

(
g−1
)cn(

gbc,a + gac,b − gab,c
)
,

which, relabelling n→ a→ c→ m gives

Γabc =
1

2

(
g−1
)ma(

gbm,c + gcm,b − gcb,m
)

which is the result (when you us the symmetries). So we see the connection coefficient
functions are uniquely determined by the metric components given the above conditions.

26.10.3 Massaging The Length Functional
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Question: Let γ : (0, 1) →M be a smooth curve on a smooth manifold (M,O,A).
Now consider a second curve γ̃ : (0, 1)→M defined by

γ̃(λ) = γ
(
σ(λ)

)
,

where σ : (0, 1)→ (0, 1) is an increasing bijective smooth function.
Show that the length of both curves is the same:

L[γ̃] = L[γ].

Solution: Using

L[γ] =
√
g(vγ , vγ), and ˙̃γ

a
(λ) = (xa ◦ γ)′(λ),

and introducing the notation

λ̃ := σ(λ), =⇒ γ̃(λ) = γ(λ̃),

we have

L[γ̃] :=

∫ 1

0
dλ
√
g(vγ̃ , vγ̃)

=

∫ 1

0
dλ

√
gab
(
γ̃(λ)

)
· ˙̃γ

a
(λ) · ˙̃γ

b
(λ)

=

∫ 1

0
dλ

√
gab
(
γ(λ̃)

)
· (xa ◦ γ ◦ σ)′(λ) · (xb ◦ γ ◦ σ)′(λ)

=

∫ 1

0
dλ

√
gab
(
γ(λ̃)

)
· (xa ◦ γ)′(λ̃) · σ̇(λ) · (xb ◦ γ)′(λ̃) · σ̇(λ)

=

∫ 1

0
dλσ̇(λ)

√
gab
(
γ(λ̃)

)
· γ̇a(λ̃) · γ̇b(λ̃)

=

∫ 1

0
dλ̃

√
gab
(
γ(λ̃)

)
· γ̇a(λ̃) · γ̇b(λ̃)

= L[γ],

where we have used the chain rule, and the result dλ̃ = σ̇dλ.

Question: Show that the Euler-Lagrange equations for a Lagrangian T have precisely
the same solutions as the Euler-Lagrange equations for the Lagrangian L :=

√
T , if

of the latter one only selects those solutions that satisfy the condition T = 1 on their
parameterisation.

Solution: Let’s denote the canonical variables at t and q, then the Euler-Lagrange equa-
tions for L read

d

dt

(
∂L
∂q̇a

)
− ∂L
∂qa

= 0.
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Substituting in L :=
√
T , and using the assumption that we only consider solutions were

T = 1, and so it is a constant w.r.t. t, we have

0 =
d

dt

(
∂
√
T

∂q̇a

)
− ∂
√
T

∂qa

=
d

dt

(
1

2
√
T
∂T
∂q̇a

)
− 1

2
√
T
∂T
∂qa

=
1

2
√
T

[
d

dt

(
∂T
∂q̇a

)
− ∂T
∂qa

]
,

which multiplying out the 1/2
√
T gives the answer.

26.10.4 A Practical Way To Quickly Determine Christoffel Symbols

Question: Derive the geodesic equation for the two-dimensional round sphere of
radius R, whose metric in some chart (U, x) is given by

gab
(
x−1(ϑ, φ)

)
=

(
R2 0
0 R2 sin2 ϑ

)
via a convenient Euler-Lagrange equation. In order to lighten notation, you may define

ϑ(λ) := (x1 ◦ γ)(λ), and φ(λ) := (x2 ◦ γ)(λ).

Solution: We have L[γ] :=
√
g(vγ , vγ), but the previous question showed us we can

instead consider T := g(vγ , vγ) = gabγ̇
aγ̇b if we restrict ourselves to T = 1 on the parameter-

isation. For our metric components, we have

T = R2 · ϑ̇(λ) · ϑ̇(λ) +R2 sin2 ϑ · φ̇(λ) · φ̇(λ).

Plugging this into our Euler-Lagrange equations, we have

d

dλ

(
∂T
∂ϑ̇

)
− ∂T
∂ϑ

= 2R2
(
ϑ̈(λ)− sinϑ cosϑ · φ̇2(λ)

)
d

dλ

(
∂T
∂φ̇

)
− ∂T
∂φ

= 2R2 sinϑ
(

sinϑ · φ̈(λ) + 2 cosϑ · ϑ̇ · φ̇
)

which simplify to

ϑ̈(λ)− sinϑ cosϑ · φ̇2(λ) = 0

φ̈+ 2 cotϑ · ϑ̇ · φ̇ = 0.

These are the geodesic equations for our round sphere of radius R.

Question: Read off the metric-induced connection coefficient functions for the round
sphere.
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Solution: Comparing the above result to the geodesic equation for the metric induced
connection coefficients,

γ̈a + Γabcγ̇
bγ̇c,

we see straight away that

Γ1
22 = − sinϑ cosϑ, and Γ2

12 = Γ2
21 = cotϑ,

with all other Γs vanishing. Note in the second expression there is no 2 as we distribute it
across the Γ2

12 and Γ2
21.

26.10.5 Properties Of The Riemann-Christoffel Tensor

Question: Show that the chart-induced basis fields act on the coefficient functions as

∂

∂xc
(
g−1
)ab

= −
(
g−1
)ar(

g−1
)bs ∂

∂xc
grs.

Solution: Using (g−1)abgbs = δas , we have

0 =
∂

∂xc
δas

=
∂

∂xc

((
g−1
)ab
gbs

)
=

(
∂

∂xc
(
g−1
)ab)

gbs +
(
g−1
)ab( ∂

∂xc
gbs

)
=

∂

∂xc
(
g−1
)ar

+
(
g−1
)sr(

g−1
)ab( ∂

∂xc
gbs

)
which, after relabelling and rearranging gives the result.

Question: Use normal coordinates to find an expression for the Riemann-Christoffel
tensor

Rabcd = gakR
k
bcd

at a given point p in terms of gab and its first and second order derivatives at that
very point.

Solution: This is just a long calculation involving the product rule and using the fact
that in normal coordinates all the Γs vanish. The full calculation is given in the video. The
result is

Rabcd =
1

2

(
gad,bc − gbd,ac + gac,bd − gbc,ad

)
,

where

gab,cd :=
∂2gab
∂xc∂xd

.
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Question: Show — in normal coordinates — that Rabcd = −Rbacd.

Solution: Switching the indices a↔ b in the result of the previous exercise we have

Rbacd =
1

2

(
gbd,ac − gad,bc + gbc,ad − gac,bd

)
= −1

2

(
gad,bc − gbd,ac + gac,bd − gbc,ad

)
= −Rabcd.

Question: Similarly, show that Rabcd = Rcdab.

Solution: Again just switch the indices and get the result.

Question: Show that Ra[bcd] = 0 for the Riemann-Christoffel tensor.

Solution: We have

Ra[bcd] :=
1

3!

(
Rabcd −Rabdc +Racdb −Racbd +Radbc −Radcb

)
.

Then using the previous two questions, we also have

Rabcd = Rcdab = −Rdcab = −Rabdc.

Following this with the other indice arrangments, we get

Ra[bcd] =
1

3

(
Rabcd +Racdb +Radbc

)
.

If you then plug in the expansion in terms of gab and its derivatives, you can show everything
cancels and you get the result.

26.11 Symmetry

26.11.1 Pull-Back & Push-Forward

Question: Consider a smooth map φ : M → N between two differential manifolds.
Show that a function f ∈ C∞(N ), the pull-back of the gradient of f is the same as
the gradient of the pull-back of f , i.e.

φ∗(df) = d(φ∗f).

Solution: By definition, we have

(φ∗X)〈f〉 = X〈f ◦ φ〉,
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for X ∈ TM, giving

φ∗(df) : X := df : φ∗(X)

= φ∗X〈f〉
= X〈f ◦ φ〉
= d(f ◦ φ) : X

=: d(φ∗f) : X,

which holds for arbitrary X and therefore proves the result.

Question: The push-forward φ∗ : TM → TN is a linear map between tangent
bundles. Calculate its component functions

φ a
∗ b := dya : φ∗

(
∂

∂xb

)
with respect to charts (U ⊂M, x) and (V ⊂ N , y)!

Solution: If we considered a general vector and gradient, we would have

df : φ∗X = φ∗X〈f〉 = X〈f ◦ φ〉 = Xi

(
∂(f ◦ φ)

∂xi

)
.

Now we have (
∂(f ◦ φ)

∂xi

)
p

:= ∂i
(
f ◦ φ ◦ x−1

)∣∣
x(p)

= ∂i
(
f ◦ y−1 ◦ y ◦ φ ◦ x−1

)∣∣
x(p)

= ∂j
(
f ◦ y−1

)∣∣
(y◦φ◦x−1◦x)(p)

· ∂i
(
yi ◦ φ ◦ x−1

)∣∣
x(p)

=:

(
∂f

∂yj

)
q

·
(
∂(yj ◦ φ)

∂xi

)
p

,

where q := φ(p) ∈ N . Now put in f = ya and X = ∂
∂xb

, giving

φ a
∗ b(p) =

(
∂ya

∂yj

)
q

·
(
∂(yj ◦ φ)

∂xb

)
p

= δaj ·
(
∂(yj ◦ φ)

∂xb

)
p

=

(
∂(y ◦ φ)a

∂xb

)
p

.

Question: Show that the component functions of the pull back φ∗g of the metric
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tensor field are obtained from the component functions of g by

(φ∗g)ab(p) =

(
∂(y ◦ φ)m

∂xa

)
p

(
∂(y ◦ φ)n

∂xb

)
p

gmn
(
φ(p)

)
.

Solution: With the definition of the induced metric in mind, we have

(φ∗g)(X,Y ) = g
(
φ∗X,φ∗Y

)
= gab

(
φ∗X

)a(
φ∗Y

)b
= gab

(
dya : φ∗X

)(
dyb : φ∗Y

)
.

Then if we use gab = g
(
∂
∂xa ,

∂
∂xb

)
and the results of the previous exercise we get

(φ∗g)ab(p) = gmn(q) ·
[
dym : φ∗

(
∂

∂xa

)]
(p) ·

[
dyn : φ∗

(
∂

∂xb

)]
(p)

=

(
∂(y ◦ φ)m

∂xa

)
p

(
∂(y ◦ φ)n

∂xb

)
p

gmn
(
φ(p)

)
.

26.11.2 Lie Derivative — The Pedestrian Way

Question: Consider the smooth embedding ι : S2 → R3 of (S2,O,A) into (R3,Ost,B),
which for the familiar chart (U, x) ∈ A and (R3, y = 1R3) ∈ B is given by

y ◦ ι ◦ x−1 : (ϑ, ϕ) 7→ (a cosϕ sinϑ, b sinϕ sinϑ, c cosϑ),

where a, b and c are positive real numbers. What can you say about the shape of
ι(S2)?

Solution: Nothing as in order to talk about shape you need either a covariant derivative
or a metric, neither of which we have. I guess you could say it is some closed and compact
2-dimensional shape, but you could not specify which one, i.e. if its a round sphere or an
ellipsoid or a potato.

Question: Now assume (R3,Ost,B) is additionally equipped with the Euclidean met-
ric g, whose components with respect to the chart (R3, y) are given by

gab(p) =

1 0 0
0 1 0
0 0 1

 for any p ∈ U.

Write down the component functions of gellipsoid := ι∗g with respect to the chart (U, x)!
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Solution: Using the result of the previous questions, we need to find(
∂(y ◦ ι)m

∂xa

)
p

:= ∂a
(
ym ◦ ι ◦ x−1

)∣∣
x(p)

.

Using the definition given, we have(
∂(y ◦ ι)1

∂x1

)
p

= a cosϕ cosϑ,

(
∂(y ◦ ι)1

∂x2

)
p

= −a sinϕ sinϑ(
∂(y ◦ ι)2

∂x1

)
p

= b sinϕ cosϑ,

(
∂(y ◦ ι)2

∂x2

)
p

= b cosϕ sinϑ(
∂(y ◦ ι)3

∂x1

)
p

= −c sinϑ,

(
∂(y ◦ ι)3

∂x2

)
p

= 0.

You then just plug in the relevant terms, giving

gellipsoid11 = a2 cos2 ϕ cos2 ϑ+ b2 sin2 ϕ cos2 ϑ+ c2 sin2 ϑ

gellipsoid22 = a2 sin2 ϕ sin2 ϑ+ b2 cos2 ϕ sin2 ϑ,

and gellipsoid12 = 0 = gellipsoid21 .

Question: For convenience, denote by (ϑ, ϕ) the coordinate functions (x1, x2). Check
the vector fields

X1(p) = − sinϕ(p)

(
∂

∂ϑ

)
p

− cotϑ(p) cosϕ(p)

(
∂

∂ϕ

)
p

X2(p) = cosϕ(p)

(
∂

∂ϑ

)
p

− cotϑ(p) sinϕ(p)

(
∂

∂ϕ

)
p

X3(p) =

(
∂

∂ϕ

)
p

constitute a Lie subalgebra of (ΓTS2, [·, ·]) and determine the structure constants!

Solution: Let f ∈ C∞(M) be an arbitrary smooth function. We need to consider the
action of the Lie bracket expressions on f , e.g. [X1, X2]〈f〉. We use the clever trick that in
this expansion only the terms where a derivative acts on a term in the Xs will remain. That
is, any terms that are second order derivative of f will vanish because it will appear in both
X1〈X2〈f〉〉 and X2〈X1〈f〉〉 which the order switched, but partial derivative commute and so
these terms cancel.
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We then have (dropping the ps for notational reasons)

[X1, X2]〈f〉 := X1

〈
X2〈f〉

〉
−X2

〈
X1〈f〉

〉
=

[(
− cosec2ϑ sin2 ϕ+ cot2 ϑ cos2 ϕ

)(∂f
∂ϕ

)
+ cotϑ cosϕ sinϕ

(
∂f

∂ϑ

)]
−
[(

cosec2ϑ cos2 ϕ− cot2 ϑ sin2 ϕ
)(∂f

∂ϕ

)
+ cotϑ sinϕ cosϕ

(
∂f

∂ϑ

)]
=
(

cot2 ϑ− cosec2ϑ
)(∂f

∂ϕ

)
= −

(
∂

∂ϕ

)
〈f〉

= −X3〈f〉
=⇒ [X2, X1] = X3,

where on the last line we have used the antisymmetry of the Lie bracket.
Next we have

[X1, X3]〈f〉 = 0−
[
− cosϕ

(
∂f

∂ϑ

)
+ cotϑ sinϕ

(
∂f

∂ϕ

)]
= X2〈f〉

=⇒ [X1, X3] = X2,

and

[X3, X2] =

[
− sinϕ

(
∂f

∂ϑ

)
− cotϑ cosϕ

(
∂f

∂ϕ

)]
− 0

= X1〈f〉
=⇒ [X3, X2] = X1.

So we see that {X1, X2, X3} is closed under the Lie bracket, and so forms a Lie subalgebra.
The structure constants are

C3
21 = C2

13 = C1
32 = 1,

and all other non-related (i.e. not C3
12 = −C3

21, etc.) structure constants vanish.
Note this result tells us that {X1, X2, X3} is a 3-dimensional rotation algebra, as defined

in the lecture. We therefore expect it to be a symmtry of S2, which we show explictly below
for X3.

Question: Calculate the integral curve of X3 through the point p = x−1(ϑ0, ϕ0), i.e.
the curve γp satisfying

γp(0) = p, and vγp,γp(λ) = (X3)γp(λ)

in the chart (U, x)!
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Solution: Using

vγp,γp(λ) = (X3)γp(λ) ⇐⇒ γ̇ip(x)

(
∂

∂xi

)
γp(λ)

=

(
∂

∂ϕ

)
γp(λ)

,

we have

γ̇1
p(x)(λ) :=

(
x1 ◦ γp

)′
(λ) = 0, and γ̇2

p(x)(λ) :=
(
x2 ◦ γp

)′
(λ) = 1,

from which is follows that

ϑ(γp) = a, and ϕ(γp) = λ+ b,

for constants a and b. We see from the question that a = ϑ0 and b = ϕ0. So we have

γp(x)(λ) =
(
ϑ0, λ+ ϕ0

)
,

which satisfies
γp(0) = x−1

(
γp(x)(0)

)
= x−1(ϑ0, ϕ0) = p.

Question: The integral curves γp give rise to a one-parameter family of smooth maps
hX3
λ : S2 → S2. Calculate the pull-back(

hX3
λ

)∗
gellipsoid

of the metric on S2. What can you conclude about the Lie derivative LX3g
ellipsoid?

Solution: The flow is
hX3
λ : p 7→ γp(λ),

so we have (
xm ◦ hX3

λ ◦ x
−1
)

: (ϑ, ϕ) 7→ γmp (λ),

and so (
∂(x ◦ hX3

λ )1

∂x1

)
p

:= ∂1

(
x1 ◦ hX3

λ ◦ x
−1
)∣∣∣
x(p)

= ϑ0(
∂(x ◦ hX3

λ )1

∂x2

)
p

:= ∂2

(
x1 ◦ hX3

λ ◦ x
−1
)∣∣∣
x(p)

= 0(
∂(x ◦ hX3

λ )2

∂x1

)
p

:= ∂1

(
x2 ◦ hX3

λ ◦ x
−1
)∣∣∣
x(p)

= 0(
∂(x ◦ hX3

λ )2

∂x2

)
p

:= ∂2

(
x2 ◦ hX3

λ ◦ x
−1
)∣∣∣
x(p)

= λ+ ϕ0.

This gives us [(
hX3
λ

)∗
gellipsoid

]
11

(p) = ϑ2
0g

ellipsoid
11

(
γp(λ)

)
[(
hX3
λ

)∗
gellipsoid

]
22

(p) = (λ+ ϕ0)2gellipsoid22

(
γp(λ)

)
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and again the other two components vanish. If we then take the coordinate transformation

ϑ→ 1

ϑ0
ϑ, and ϕ→ 1

λ+ ϕ0
ϕ,

which we can do as ϑ0, ϕ0 > 0 (as the ranges of ϑ and ϕ are positive), we then get[(
hX3
λ

)∗
gellipsoid

]
ab

(p) = gellipsoidab

(
γp(λ)

)
,

or more nicely (
hX3
λ

)∗
gellipsoid = gellipsoid.

This tells us that X3 is a symmetry of the metric, and so LX3g
ellipsoid = 0.

26.12 Integration

26.12.1 Integrals & Volumes

Question: Calculate the volume of the round sphere S2 of radius R, i.e.,

vol(S2) =

∫
S2

1.

Solution: The first thing we have to not is that ‘volume’ here does not mean what we
intuitively think, i.e. the Euclidean 3-volume, but it means what we would normally call the
‘surface area’. This distinction comes from which metric we are using, the metric on S2 itself
or the Euclidean metric with a sphere of radius R embedded into it. Once this distinction is
made the calculation is trivial, consider the chart with (x1, x2) = (ϑ, ϕ), then

g(x)ab

(
x−1(ϑ, ϕ)

)
=

(
R2 0
0 R2 sin2 ϑ

)
, =⇒ g := det

(
g(x)ab

)(
x−1(ϑ, ϕ)

)
= R4 sin2 ϑ

and so ∫
S2

1 :=

∫
x(S2)

d2x
√
g1

=

∫ π

0
dϕ

∫ 2π

0
dϑ
∣∣R2 sin2 ϑ

∣∣
= 4πR2,

which is what we expect.
Technically we need to include another chart, as x(S2) will miss two antipodal points

and a geodesic connecting them, however this will contribute nothing to the volume as, we
would only consider this line (the partition of unity removing the overlap region), which has
no ‘thickness’ and so no volume. For example if the line missing was the line of longitude
connecting the North and South poles, we would have∫ ϕ0

ϕ0

dϕ

∫ π

0
dϑR2 sinϑ = 0,

where ϕ0 is the value of ϕ along the line of longitude.
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26.13 Schwarzschild Spacetime

26.13.1 Geodesics In A Schwarzschild Spacetime

The Schwarzschild metric is given and we are told to use the light hand notation

t(λ) :=
(
x0 ◦ γ)(λ),

and similarly for r(λ), θ(λ) and ϕ(λ), where γ : R→ U is some curve.
Question: Write down the Lagrangian L := gabγ̇

aγ̇b!

Solution: Using the metric given in the question (see the video if you don’t know it) we
have

L =

(
1− 2GM

r

)
ṫ2 −

(
1− 2GM

r

)−1

ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2.

Question: Find the Euler-Lagrange equation with respect to t(λ)!

Solution: We see straight away that

∂L
∂t

= 0.

We also have
d

dλ

(
∂L
∂ṫ

)
= 2

(
1− 2GM

r

)
ẗ+

4GM

r2
ṙṫ,

which gives the Euler-Lagrange equation

ẗ+
2GM

r2
(

1− 2GM
r

) ṙṫ = 0

Question: Show that the Lie derivative of g with respect to the vector field Kt := ∂
∂t

vanishes. What does this mean?

Solution: We have

(LKtg)ab = Kt〈gab〉+ gmb
∂

∂xa
(Kt)

m + gab
∂

∂xb
(Kt)

m = 0,

as all three terms vanish. This tells us that Kt is a symmetry of the metric. Indeed the
Schwarzschild spacetime is stationary (and even static), the definitions for which are given in
lecture 16. We will see this symmetry is the conservation of energy.
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Question: The exact form of the conserved quantity is given by (Kt)a(x
a)′(λ) =const.

(without proof). Derive an expression for the quantity t′(λ) appearing in the La-
grangian!

Solution: Using (Kt)a := gab(Kt)
b, we have

gab(Kt)
b(xa)′(λ) = g00t

′(λ) =

(
1− 2GM

r

)
t′(λ) = const.

Letting
√
E be the constant, we have

t′(λ) =
r
√
E

r − 2GM

Question: Moreover, we can find so-called "spherical symmetry", that is, the Lie
derivative of g with respect to the already known vector fields

X1 = sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

X2 = cosϕ
∂

∂θ
− cot θ sinϕ

∂

∂ϕ

X3 =
∂

∂ϕ

vanishes. What physical quantity is conserved by this symmetry?

Solution: Angular momentum.

Question: Due to X1 and X2 (without proof), one can fix the motion to a plane of
constant θ = π

2 . How can you derive an expression for the remaining term ϕ′(λ)?

Solution: From two questions above, we have

const. = gabX
b
3(xa)′(λ) = g33ϕ

′(λ) = −r2 sin2 θϕ′(λ),

so using θ = π
2 and labelling the constant J , we have

ϕ′(λ) =
J

r2
.

Question: Use all the fact that L = 1 on the parameterisation. Insert the previously
obtained results and take all terms not containing E to one side!
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Solution: First note that we have replaced the dots with primes, and also note that θ′ = 0
as θ is a constant. We therefore have

1 =

(
1− 2GM

r

)
E(

1− 2GM
r

)2 −
1

1− 2GM
r

(r′)2 − r2J
2

r4
,

which can be rearranged to

E = (r′)2 + 1− 2GM

r
+
J2

r2
− 2GMJ2

r3
.

Question: Can you interpret the terms appearing in this expression?

Solution: If we then consider a particle of mass m = 1, we see the above formula as
representing

• E is total energy,

• (r′)2 is the kinetic energy,

• 1 is the mass,

• −2GM
r is the Newtonian gravitational potential,

• J2

r2
is some angular momentum contribution, and

• −2GMJ2

r3
is some GR correction term.

26.13.2 Gravitational Redshift

Consider a spacetime equipped with the Schwarzschild metric as well as two observers
1 and 2 at rest in their respective system of reference (ṙ = 0, θ̇ = 0, ϕ̇ = 0). The
observers sit at the same θ and ϕ while r1 < r2.
Question: Derive an expression for t′(λ) using the Lagrangian from the previous
exercise!

Solution: Using 1 = L = gabγ̇
aγ̇b, we get

t′(λ) =

(
1− 2GM

r

)−1/2

.

Question: Observer 1 emits photons that observer 2 detects. The gap between the
two photon emissions is ∆λ1. Find the gap ∆λ2 seen by observer 2!
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Solution: We have

∆t1 =

(
1− 2GM

r1

)−1/2

∆λ1

∆t2 =

(
1− 2GM

r2

)−1/2

∆λ2.

Then, we use the fact that Kt was a Killing vector field, and so the path taken by the two
emitted photons is the same, apart from a constant time shift.

r

t

r1 r2

∆t1

∆t2

As the above diagram shows, the Killing condition basically tells us that ∆t1 = ∆t2, and
so we get

∆λ2 =

√√√√1− 2GM
r2

1− 2GM
r1

∆λ1

Question: Consider the ratio of frequencies ω1
ω2
. What happens for observer 2 being

approximately at infinity? What happens when sending r1 to the Schwarzschild radius
rs = 2GM?

Solution: We can think of ∆λ being the time period (time between photons emitted)
and so the frequency (which is the reciprocal of the time period) is

ω1

ω2
=

∆λ2

∆λ1
=

√√√√1− 2GM
r2

1− 2GM
r1

.

As r1 < r2, the above tells us that ω2 < ω1. In terms of wavelength, this is µ1 < µ2 (we
have used µ for wavelength as λ is already used above), which tells us that the light has been
red-shifted. This is seen also in the definition of redshift,

1 + z =
ω1

ω2
,

where z > 0 is redshift and z < 0 is blueshift.
For r2 →∞ we have

ω1

ω2
→
(

1− 2GM

r1

)−1/2

.
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For r1 → rs, we have
ω1

ω2
→∞,

which tells us ω1 → ∞. In terms of wavelengths, this says µ2 → ∞, and so the light is
infinitely redshifted. This is a so-called infinite redshift surface.

This result is actually misleading as it really only holds because of the choice of reference
frame. We took the coordinate time to be that of the black hole’s rest frame. If we use
an in-falling observer’s clock to define the coordinate time, this infinite redshift behaviour
disappears. I have discussed this in more detail in the notes I have put on my blog site.

26.14 Relativistic Spacetime, Matter & Gravitation

26.14.1 Lorentz Force Law

Question: Recall from the lecture that for a particle coupling to the electromagnetic
potential, we have

m
(
∇vγvγ

)a
= qF abvγ

b,

where vγ is the velocity of a particle of mass m and charge q.
Now "1 + 3"-decompose this equation in components with respect to the frame of an
observer.

Solution: The observer (δ, e) has a frame such that

g(ea, eb) = ηab, and e0(λ) = vδ,δ(λ).

We thus have
m
(
∇vγvγ

)a
= qF acηcbvγ

b,

and so

m
(
∇vγvγ

)0
= qF 00vγ

0 +

3∑
β=1

qF 0βvγ
β

m
(
∇vγvγ

)α
= −qFα0vγ

0 −
3∑

β=1

qFαβvγ
β.

Question: Using the definitions Eα := Fα0 for the electric field and Bα := 1
2ε
αρσFρσ

for the magnetic 2 field seen by an observer, bring the right hand side of the above
equation to the familiar form of the Lorentz force law for a particle of charge q and
spatial velocity

v :=

(
eα : vδ
e0 : vδ

)
eα (α = 1, 2, 3 and careful: the denominator was forgotten in lectures)

that the observer detects for the particle.
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Hint: (a× b)α = gαµεµρσa
ρbσ, ε123 = 1 and ε123 = 1.

Solution: We set
Fα = m

(
∇vδvδ

)α
= qFαbvδ

b,

where F is the Lorentz force, up to some factors. We can split the right-hand side into two
terms, one for b = 0 and the other for b = β. For the former we note that

ηαβEβ = ηαβFβ0 = Fα0,

so, using ε0 : (vδ) = vδ
0, the first term is simply

qηαβEβ
(
ε0 : vδ

)
.

The second term need a little more work, but we start using the hint: using gab = ηab in the
observers frame, we have

(vδ ×B)α = ηαµεµρσvδ
ρBσ :=

1

2
ηαµεµρσε

σντvδ
ρFντ .

We see that the ηαµ tells us that µ = α in the Levi-Civita symbol. By definition, the only
non-vanishing terms on the right, then, have ρ 6= σ 6= α. Let’s consider the case for α = 1
(the other two follow analogously)
1

2
η1µεµρσε

σντFντvδ
ρ =

1

2
ε123

(
ε312F12 + ε321F21

)
vδ

2 +
1

2
ε132

(
ε213F13 + ε231F31

)
vδ

3

=
1

2
ε123

(
ε123F12 + (−ε123)(−F12)

)
vδ

2 +
1

2
(−ε123)

(
(−ε123)F13 + ε123(−F13)

)
vδ

3

= F12vδ
2 + F13vδ

3,

where we have indicated where the antisymmetries of ε and F have been used, and we have
also used ε123 = 1 = ε123. This generalises to

1

2
ηαµεµρσε

σντFντvδ
ρ = ηασFσβvδ

β = Fαβvδ
β,

where we note the fact that Fαα = 0 due to antisymmetry.
So the second term in our Lorentz force equation is simply

qFαβvδ
β = q

(
vδ ×B

)α
,

giving us
Fα = qηαβEβ

(
ε0 : vδ

)
+ q
(
vδ ×B

)α
.

Finally, we note that
1

(ε0 : vδ)

(
vδ ×B

)α
=
(
v ×B

)α
,

as everywhere in the calculation above we’ll get terms like

vρδ
(ε0 : vδ)

=
(ερ : vδ)

(ε0 : vδ)
=: vρ.

This gives us the form we want on the right-hand side, i.e.
1

(ε0 : vδ)
Fα = qηαβEβ + q

(
v ×B

)α
.
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26.14.2 Which Curvature Can Feature In Einstein’s Equations?

This questions asks to show that the differential Bianchi identity holds for the Riemann
tensor. This was given as an exercise in the lecture.
If the reader couldn’t work it out there, this link should prove helpful. Note the
notation is slightly different in the link, but of course the answer is the same.
I didn’t include this link in the notes to hopefully avoid temptation of just looking up
the answer.

Question: The above component-free version can equivalently be written as

Rwzab;c +Rwzbc;a +Rwzca;b = 0.

Using this result, show that by appropriate contractions one obtains

(∇aG)ab = 0.

Solution: First use the antisymmetry to give

Rwzab;c +Rwzbc;a +Rwzca;b = Rwzab;c +Rwzbc;a −Rwzac;b.

Now, we can use the fact that ∇ is metric-compatible and the result

gavgvw = δaw

to give

gavgvw
(
Rwzab;c +Rwzbc;a +Rwzca;b

)
= Razab;c +Razbc;a −Razac;b
= Rzb;c −Rzc;b +Razbc;a.

Then contract with gbz along with the results R a
z bc = −Razbc2 and R := gabRab to give

gbz
(
Rzb;c −Rzc;b +Razbc;a

)
= R;c −Rbc;b −Rbabc;a
= R;c −Rbc;b −Rac;a
= R;c − 2Rbc;b.

Finally using the fact that the Ricci tensor is symmetric,3 and contracting with gac, we have
(after relabelling) (

∇aG)ab = Rab;a −
(

1

2
gabR

)
;a

= 0.

26.20 Cosmology

26.20.1 Killing’s Equation

2We essentially showed this result in tutorial 9 (we showed Rabcd = −Rbacd).
3This result is obtained from Rabcd = Rcdab, then setting a = c and raising the first index back up.

https://math.stackexchange.com/questions/1494262/direct-proof-of-the-second-bianchi-identity
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Question: Show that a vector field K is Killing if, and only if,

(∇aK)b + (∇bK)a = 0.

Solution: If you have done the exercise in the notes to show

g
(
∇XK,Y

)
+ g
(
X,∇YK

)
= 0,

this question follows trivially by setting X = ∂a and Y = ∂b:

0 = gcb
(
∇aK)c + gac

(
∇bK)c =: (∇aK)b + (∇bK)a.

If you didn’t do that exercise, go back and do it, but also you can see the video for a
method considering the components.

This result is known as Killing’s equation.

26.20.2 Age Of The Universe...

The energy-momentum tensor for a perfect fluid is

T ab :=
[
ρ(t) + p(t)

]
uaub + gabp(t),

where ua = (1, 0, 0, 0)a are the components functions of a smooth vector field and
gab are those of a FRW metric w.r.t. the coordinate chart (t, r, ϑ, φ) employed in the
lectures.
Question: Derive the conservation equation

ρ̇(t) = −3
ȧ

a

(
ρ(t) + p(t)

)
by evaluating the condition (

∇aT
)ab
ub = 0,

which follows from the Einstein equations by virtue of the differential Bianchi identity.

Solution: We have (
∇aT

)ab
ub =

(
∇aT

)a0
,

as ub = (1, 0, 0, 0)b. Then using T a0 = 0 and T 00 = ρ(t) we have(
∇aT

)ab
ub = T a0

,a + ΓanaT
n0 + Γ0

naT
an

= ρ̇(t) + Γa0aρ(t) + Γ0
naT

an.

We now use the results from the lecture,

Γα0α =
ȧ

a
δαα = 3

ȧ

a
, Γ0

αβ = aȧγαβ,

https://www.youtube.com/watch?v=HuQ79CWcDac&list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL&index=10
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and the other Γs vanishing. This gives(
∇aT

)ab
ub = ρ̇(t) + 3

ȧ

a
ρ(t) + aȧγαβT

αβ.

Then using Tαβ = p(t) and gαβ = 1
a2
γαβ we get

0 = ρ̇(t) + 3
ȧ

a
ρ(t) +

ȧ

a
γαβγ

αβp(t),

which gives the result.

Question: For p(t) = ωρ(t), solve the conservation equation above for ρ and use the
Friedmann equation with vanishing spatial curvature(

ȧ

a

)2

=
8πG

3
ρ,

to derive an autonomous differential equation for a.

Solution: We have

ρ̇(t) = −3
ȧ(t)

a(t)
(1 + ω)ρ(t)

ρ̇(t)

ρ(t)
= −3

ȧ(t)

a(t)
(1 + ω)

d

dt
ln
(
ρ(t)

)
= −3(1 + ω)

d

dt
ln
(
a(t)

)
ρ(t) = Ba−3(1+ω),

for some constant B = eA, where A is the constant of integration. If we plug this into the
expression given in the question we have(

ȧ

a

)2

=
8πGB

3
a−3(1+ω),

which is an autonomous differential equation for a.

Question: Show that
a(t) = C · tα, C = const

solves the autonomous differential equation equation for the scale factor a if ω 6= 1
and a suitably chosen α.

Solution: By direct calculation, we have

α2t−2 =
8πGBC

3
t−3α(1+ω),

from which we see
α =

2

3(1 + ω)
.
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Question: Use the result of the previous question to write down an equation for
H(t) := ȧ

a and estimate the age of the universe only filled with dust for today’s value
of the Hubble constant being given by 1

H0
≈ 13× 109yrs. Repeat the calculation for

a universe containing only radiation.

Solution: We have

a(t) = C · t
2

3(1+ω) , =⇒ H(t) =
2

3(1 + ω)
t−1.

So the age is given by

t0 =
2

3(1 + ω)

1

H0
.

For dust ω = 0 and so we have
tdust0 ≈ 8.6× 109yrs.

For radiation, ω = 1
3 , giving

tradiation0 ≈ 6.5× 109yrs.

Question: Consider a universe filled with only one type of matter characterised by a
linear equation of state with constant ω. For which values of the latter is the expansion
of the universe accelerating?

Solution: We have

ä(t) =

(
2

3(1 + ω)

)(
2

3(1 + ω)
− 1

)
· a · t−2.

An expanding universe means a(t) > 0 (or, equivalently, C > 0), and so the turning point for
accelerated expansion is the condition

2

3(1 + ω)
− 1 = 0 =⇒ ω = −1

3
.

We therefore get accelerated expansion for ω < −1
3 and decelerated expansion for ω > −1

3 .

26.23 Diagrams

26.23.1 Penrose Diagram Of A Radiation-Filled Universe

Question: Find a differential equation for radial null geodesics in a spatially flat FRW
universe filled with radiation, using the chart (t, r, ϑ, φ) introduced in the lectures.
Explicitly write down the precise range of the chart variables.
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Solution: A spatially flat FRW universe has κ = 0 and a metric with components

gab(t, r, ϑ, ϕ) =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t)r2 0
0 0 0 a2(t)r2 sin2 ϑ


ab

,

in the chart given. If we have a radiation-filled universe, we have ω = −1
3 , and from the last

tutorial we have
a(t) = C · t1/2.

Radially null geodesics have ϑ̇ = 0 = φ̇, so our Lagrangian reads

0 = −ṫ2 + a2 · ṙ2,

which, subbing in our a(t) expression and using the chain rule backwards, gives the differential
equation

dt

dr
= ±C

√
t.

We have seen that in the FRW universe, there is a beginning time (the Big Bang), and so
our t coordinate must be lower bounded. We can choose to parameterise it such that t = 0 is
the Big Bang value, giving us the coordinate ranges

t ∈ (0,∞), r ∈ (0,∞), ϑ ∈ (0, π), and φ ∈ (0, 2π),

where the 0 point is removed from t’s range as it is not actually a point in our spacetime (it’s
a singularity).

Question: Determine the t-coordinate of a geodesic in terms of the r coordinate.
Draw some of the null geodesics in the underlying chart.

Solution: Solving the differential equation from the previous question gives us

t±(r) =
1

4

(
A± Cr

)2
,

for some integration constant A. So we have a series of squared curves, shifted for different
values of A.

r

t
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The white circles indicated that these points are not part of our diagram as t and r cannot
take the value 0. As these parts are not included, the lines to either side actually represent
two separate geodesics, just as we saw with the Schwarzschild drawings in the lectures.

Question: Find a chart in which the geodesics are lines of constant slope ±1. Deter-
mine the range of the coordinates.

Solution: We can rearrange the expression for t± in terms of r to give

r = ± 2

C

√
t+ −

A

C
, r = ∓ 2

C

√
t− +

A

C
.

If we then define
t̄± :=

2

C

√
t±,

we get
r = ±t̄+ −B, r = ∓t̄− +B,

where B = A
C . All of these plots are just lines of constant slope ±1. With a bit of thought,

its clear that we can just consider either t̄+ or t̄− and obtain the other results using different
values of B. So we shall just write

r± = ±t̄−B.
The ranges are

t̄ ∈ (0,∞), r ∈ (0,∞), ϑ ∈ (0, π), and φ ∈ (0, 2π),

Question: Choose the so-called null coordinates u and v in which the null geodesics
of positive slope are parallel to the u-axis and the ones of negative slope are parallel
to the v-axis. Determine the range of the coordinates.

Solution: We define
u := t̄+ r, and v := t̄− r,

and their ranges are
u ∈ (0,∞), and v ∈ (−∞,∞).

We then have the conditions u + v = 2t̄ > 0 and u − v = 2r̄ > 0, so we need to exclude the
regions u < 0, v + u < 0 and u− v < 0 from our diagram. We therefore get

u

v
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where the shaded area is the only area we consider.
The blue lines are the geodesics in this chart. Note that by going to this chart we can

compactify without ruining the 90-degree nature of the cone structure. This is exactly why
this step is included, and is what Remark 23.1.1 is talking about.

Question: Compactify, i.e., rescale to finite ranges, each of the two null coordinates
by an appropriate transformation. Determine the range of the coordinates.

Solution: We define

p := arctan(u), and q := arctan(v),

which have ranges
p ∈ (0, π/2), and q ∈ (−π/2, π/2).

Our other range conditions still hold, namely p+ q > 0 and p− q > 0.
Our plot looks the same as in the previous question, apart from now the right-hand edge

is bounded at value p = π/2.

Question: By final transformation, recover the notion of temporal and radial coordi-
nates. Determine the ranges of those coordinates. Draw the Penrose-Carter diagram.

Solution: We define

T := p+ q, and R := p− q,

whose ranges are
T ∈ (0, π), and R ∈ (0, π).

We have the further constraint T +R = 2U < π, so our Penrose-Carter diagram looks like

We have used the snake-like line to indicate the Big Bang singularity, and a dashed line on
the left-hand side to remind us that there is nothing wrong here (i.e. lines that go off to the
left just come back form the dashed line — think about rotating the diagram by reinstating
φ).

26.24 Perturbation Theory

To come later.



Useful Texts & Further Readings

General Relativity

• R. M. Wald, General Relativity, The University of Chicago Press, 1984.

• L. Ryder, Introduction to General Relativity, Cambridge University Press, 2009.

• M. P. Hobson, General Relativity: An Introduction for Physicists, Cambridge University
Press, 2006.

• W. Rindler, Relativity: Special, General and Cosmological, Oxford University Press,
2006.

• S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity, John Wiley and Sons, Inc., 1972.

Differential Geometry

• P. Renteln, Manifolds, Tensors, and Forms: An Introduction for Mathematicians and
Physicists, Cambridge University Press, 2014.

• L. W. Tu, An Introduction to Manifolds (Second addition), Springer, 2011.
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